Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét 2010 . 2010 = (2009+1).2010
= 2009.2010 +2010
= (2009.2010+2009)+1
= 2009.(2010+1)+1
= 2009.2011+1
>= 2009.2010
=> 2010/2009 > 2011/2010
Tk mk nha
a, \(\frac{2010}{2009}\)và \(\frac{2011}{2010}\)
Ta có:
2010.2010 = ( 2009 + 1 ) . 2010
= 2009 . 2010 + 2010
= ( 2009 . 2010 + 2019 ) + 1
= 2019 . ( 2010 + 1 ) + 1
= 2019 . 2011 + 1
\(\Rightarrow\)\(\frac{2010}{2009}>\frac{2011}{2010}\)
b, \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...........+\frac{1}{200}\)và 1
Ta có:
\(\frac{1}{101}< 1;\frac{1}{102}< 1;\frac{1}{103}< 1;........;\frac{1}{200}< 1\)
\(\Rightarrow\)\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.............+\frac{1}{200}< 1\)
Ta có:
\(\frac{1}{101}\)>\(\frac{1}{200}\)
\(\frac{1}{102}\)>\(\frac{1}{200}\)
\(\frac{1}{103}\)>\(\frac{1}{200}\)
...
\(\frac{1}{200}\)=\(\frac{1}{200}\)
\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{200}\)+\(\frac{1}{200}\)+..+\(\frac{1}{200}\)(100 số hạng)=\(\frac{1}{2}\)
\(\Rightarrow\)\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{2}\)
1/2=1/200+1/200+1/200+.....+1/200 (có 100 số )
1/101+1/102+....+1/200(có 100 số )
Vì 1/101>1/200
1/102>1/100
......
1/199>1/200
1/200=1/200
=>1/101+1/102+.....+1/200>1/200+1/200+...+1/200 có 100 số
=>1/101+1/102+.....+1/200>1/2
Ta thấy \(\frac{1}{101}>\frac{1}{200};\frac{1}{102}>\frac{1}{200};\frac{1}{103}>\frac{1}{200};....;\frac{1}{200}=\frac{1}{200}\)
Mà dãy \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}\)có 100 phân số nên :
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)( có 100 phân số \(\frac{1}{200}\))
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100=\frac{1.}{2}\left(đpcm\right)\)
Ta có:
\(M=\frac{101^{102}+1}{101^{103}+1}\)
\(101M=\frac{101^{103}+1+100}{101^{103}+1}=1+\frac{100}{101^{103}+1}\)
Ta lại có:
\(N=\frac{101^{103}+1}{101^{104}+1}\)
\(101N=\frac{101^{104}+1+100}{101^{104}+1}=1+\frac{100}{101^{104}+1}\)
Vì \(\frac{100}{101^{104}+1}< \frac{100}{101^{103}+1}\Rightarrow101N< 101M\Rightarrow N< M\)
Ta có: M =\(\frac{101^{102}+1}{101^{103}+1}=\frac{101^{103}+101}{101^{104}+101}=\frac{101^{103}+1+100}{101^{104}+1+100}\)
Mà : N = \(\frac{101^{103}+1}{101^{104}+1}\)< M = \(\frac{101^{103}+1+100}{101^{104}+1+100}\)
\(\Rightarrow N< M\)
Ta có:
\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}=\frac{100}{200}=\frac{1}{2}\)
\(\Rightarrow A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{2}\)