Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Ta có : P = a.{ ( a - 3 ) - [(a+3) - [ ( a + 2 ) - (a - 2 )]}
= a . { ( a - 3 ) - [ ( a + 3 ) - ( -a - 2 )]}
= a . ( a - 3 -a - 3 - a + 2 )
= a . ( - a - 8 ) = -8a -a2
: Q = [a +( a + 3 ) ] - [ ( a + 2 ) - ( a - 2 ) ]
= a + a + 3 - a - 2 - a - 2
= -1
Ta thấy -1> -8a - a2 => Q > P
Bài 2 :
Ta có : a - ( b - c ) = ( a - b ) + c = ( a + c ) - b
<=> a - b + c = a - b + c = a + c - b
do a = a ; b = b ; c = c => 3 vế bằng nhau (đpcm)
Bài 3:
a) ( a - b ) + ( c - d ) = ( a + c ) - ( b + d )
<=> a - b + c - d = a + c - b - d
<=> a - a + c - c - b + b - d + d = 0
<=> 0 = 0 => VP = VT ( đpcm)
b) a - b - ( c- d ) = ( a + d ) - ( b + c )
<=> a - b - c + d = a + d - b -c
<=> a - a - b + b - c + c + d -d = 0
<=> 0 =0 => VP = VT ( đpcm )
Ta có :\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1\)và \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}<\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
lớn hơn 2