K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2018

\(\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

___________________________________

\(\sqrt{99}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

Công hai vế của các BĐT, ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{10}=10\)

\(\Rightarrow A=B\)

11 tháng 5 2017

Ta có : \(10.A=\frac{10^{2017}+10}{10^{2017}+1}=\frac{10^{2017}+1+9}{10^{2017}+1}=\frac{10^{2017}+1}{10^{2017}+1}+\frac{9}{10^{2017}+1}=1+\frac{9}{10^{2017}+1}\)

\(10.B=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}+1}=\frac{10^{2018}+1}{10^{2018}+1}+\frac{9}{10^{2018}+1}=1+\frac{9}{10^{2018}+1}\)

Vì \(1=1\)và \(\frac{9}{10^{2017}+1}>\frac{9}{10^{2018}+1}\)nên \(1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)hay \(A>B\)

Vậy \(A>B\)

11 tháng 5 2017

a hơn b

a hơn b

a hơn b 

chúc học giỏi

17 tháng 8 2016

ĐKXĐ : \(a>0,a\ne1\)

a) \(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)

b) \(B=1-\frac{1}{\sqrt{a}}< 1\)

17 tháng 8 2016

Cảm ơn ạ!

3 tháng 7 2018

a)ĐK: \(a>0;a\ne1\)

  \(B=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}-1}{\sqrt{a}}\)

b)  \(B=\frac{\sqrt{a}-1}{\sqrt{a}}=1-\frac{1}{\sqrt{a}}< 1\) 

31 tháng 7 2016

 Ta có S = 1/11+1/12+1/13+...+1/19+1/20 nên S có 10 số hạng 
Và 1/2 = 10/20 = 
Mà 1/11 > 1/12 > 1/13 > 1/14 > 1/15 > 1/16 > 1/17 > 1/18 > 1/19 > 1/20 
Nên 1/11+1/12+1/13+...+1/19+1/20 > 1/20x10 
=> 1/11+1/12+1/13+...+1/19+1/20 > 10/20 
=> 1/11+1/12+1/13+...+1/19+1/20 > 1/2 
Vậy S > 1/2

10 tháng 6 2016

a)1 và \(\sqrt{3}-1\)

Ta có:

\(\sqrt{3}-1< \sqrt{4}-1=2-1=1\)

Vậy 1 > \(\sqrt{3}-1\)

b) \(2\sqrt{31}\) và 10
Ta có:
\(10=2.5=2.\sqrt{25}< 2.\sqrt{31}\)
Vậy \(2\sqrt{31}>10\)
c) \(-3\sqrt{11}\) và -12
Ta có:
\(-12=-3.4=-3.\sqrt{16}< -3.\sqrt{11}\)
Vậy \(-3\sqrt{11}>-12\)
 
4 tháng 7 2016

a) ta có \(\sqrt{3-1}\)=\(\sqrt{2}\)

vì 1<2=>\(\sqrt{1}\)<\(\sqrt{2}\)

b)ta có 10=\(\sqrt{100}\)và \(2\sqrt{31}\)=\(\sqrt{124}\)

vì 100<124=>\(\sqrt{100}\)<\(\sqrt{124}\)hay \(2\sqrt{31}\)>10

c)ta có -12=\(-3\sqrt{16}\)

vì 11<16=>\(\sqrt{11}\)<\(\sqrt{16}\)=>\(-3\sqrt{11}\)>\(-3\sqrt{16}\) (vì nhân với số âm)hay\(-3\sqrt{11}\)>-12