K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
25 tháng 5 2018
ta có: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}=1\)
mà \(1+3+3^2+...+3^9>1+3+3^2+...+3^8\)
\(\Rightarrow B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}>1\)
\(\Rightarrow A< B\)
25 tháng 5 2018
Câu hỏi của nguyen van nam - Toán lớp 6 - Học toán với OnlineMath
HH
1
27 tháng 4 2016
A=1+5+5^2+..+5^9/1+5+5^2+...+5^8
=1+5^9/1+5+5^2+...+5^8
B=1+3+3^2+..+3^9/1+3+3^2+..+3^8
=1+3^9/1+3+3^2+..+3^8
đặt A' =1+5+5^2+...+5^8
5A'=5+5^2+5^3+...+5^9
5A'-A'=5+5^2+5^3+...+5^9-5-1-5-5^2-...-5^8
4A'=5^9-1=>A'=(5^9-1):4
tương tự B'=(3^9-1):4
A=1+5^9/(5^9-1)/4=4.5^9/5^9-1
B=1+3^9/(3^9-1)/4=4.3^9/3^9-1
=> A<B
LT
5
ta có: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}=1\)
mà \(1+3+3^2+...+3^9>1+3+3^2+...+3^8\)
\(\Rightarrow B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}>1\)
\(\Rightarrow A< B\)
Ta thấy : A= ( 1+5+5^2+.......+5^9)/(1+5+5^2+...... +5^8)= 5^9
B=(1+3+3^2+......+3^9)/(1+3+3^2+,,,,,,,,+3/9)=1
mÀ 5^9 > 1 . SUY RA A>B
Vậy A>B
mk ko chắc chắn lắm
k cho mk nhé