\(\frac{10^9+3}{10^9-7}vàB=\frac{10^{10}+5}{10^{10-5}}\)             ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

mk giải cho câu A rồi tự suy mấy câu khác nhé!

ta có : A = 10^8 + 2/10^8 - 1

     => A = 10^8 - 1 + 3/10^8 - 1

     => A = 1+ 3/10^8 - 1

          B = 10^8/10^8 - 3

    =>  B = 10^8 - 3 + 3/10^8 - 3

    =>  B = 1+ 3/10^8 - 3

vì 3/10^8 - 1 < 3/10^8 - 3

=> 1 + 3/10^8 - 1 < 1 + 3/10^8 - 3

=> A < B

vậy A < B

cách này cô dạy mk đó

25 tháng 7 2019
https://i.imgur.com/jWx3LMv.jpg
26 tháng 7 2018

a )  Ta có : 

\(\frac{9^{10}-4}{9^{10}-5}=\frac{9^{10}-5+1}{9^{10}-5}=1+\frac{1}{9^{10}-5}\)

\(\frac{9^{10}-2}{9^{10}-3}=\frac{9^{10}-3+1}{9^{10}-3}=1+\frac{1}{9^{10}-3}\)

Do \(\frac{1}{9^{10}-5}>\frac{1}{9^{10}-3}\)

\(\Rightarrow1+\frac{1}{9^{10}-5}>1+\frac{1}{9^{10}-3}\)

\(\Rightarrow\frac{9^{10}-4}{9^{10}-5}>\frac{9^{10}-2}{9^{10}-3}\)

b ) Ta có : 

\(\frac{2.7^{10}-1}{7^{10}}=2-\frac{1}{7^{10}}\)

\(\frac{2.7^{10}+1}{7^{10}+1}=\frac{2.7^{10}+2-1}{7^{10}+1}=\frac{2\left(7^{10}+1\right)-1}{7^{10}+1}=2-\frac{1}{7^{10}+1}\)

Do \(\frac{1}{7^{10}}>\frac{1}{7^{10}+1}\)

\(\Rightarrow2-\frac{1}{7^{10}}< 2-\frac{1}{7^{10}+1}\)

\(\Rightarrow\frac{2.7^{10}-1}{7^{10}}< \frac{2.7^{10}+1}{7^{10}+1}\)

26 tháng 7 2018

mình xem chả hiểu đây này

30 tháng 4 2019

Bài làm

a ) \(A=\frac{9^{99}+1}{9^{100}+1}=\frac{9^{100}+1}{9^{100}+1}-\frac{9}{9^{100}+1}\)

           = \(1-\frac{9}{9^{100}+1}\)

\(B=\frac{10^{98}-1}{10^{99}-1}=\frac{10^{99}-1}{10^{99}-1}-\frac{10}{10^{99}-1}\)

      = \(1-\frac{10}{10^{99}-1}\)

Vì \(\frac{9}{9^{100}+1}>\frac{10}{10^{99}-1}\)

nên \(1-\frac{9}{9^{100}+1}< 1-\frac{10}{10^{99}-1}\)

\(\Rightarrow A< B\)

30 tháng 4 2019

Bài làm

b ) \(A=\frac{5^{10}}{1+5+5^2+.....+5^9}=\frac{1+5+5^2+.....+5^9}{1+5+5^2+.....+5^9}+\frac{1+5+5^2+.....+5^8-5^9.4}{1+5+5^2+.....+5^9}\)

          = \(1+\frac{1+5+5^2+.....+5^8+5^9.4}{1+5+5^2+.....+5^9}=1+5^9.3\)

\(B=\frac{6^{10}}{1+6+6^2+.....+6^9}=\frac{1+6+6^2+.....+6^9}{1+6+6^2+.....+6^9}+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}\)

     = \(1+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}=1+6^9.4\)

Vì \(1+5^9.3< 1+6^9.4\)

nên A < B

15 tháng 5 2017

Mình biết làm nhưng bạn nên viết rời ra.Viết liền làm người khác không muốn làm đó.

Làm thì dài quá nên mình gợi ý thôi nhé

a)quy đồng

b)Sử dụng phần bù

c)(1/80)^7>(1/81)^7=(1/3^4)^7=1/3^28

   (1/243)^6=(1/3^5)^6=1/3^30

Vì 1/3^28>1/3^30 nên ......

d)Tương tự câu d

 Mấy câu còn lại thì nhắn tin với mình,mình sẽ trả lời cho,mình đang mệt lắm rồi nha!!!

Ta có A = \(\frac{10^{100}-1}{10^{98}-1}=\frac{10^{98}.10^2-10^2+99}{10^{98}-1}\)

                                       \(=\frac{10^2\left(10^{98}-1\right)+99}{10^{98-1}}\)

                                        \(=10^2+\frac{99}{10^{98}-1}\)

        B= \(\frac{10^{101}-1}{10^{99}-1}=\frac{10^{99}.10^2-10^2+99}{10^{99}-1}\)

                                     \(=\frac{10^2\left(10^{99}-1\right)+99}{10^{99}-1}\)

                                       \(=10^2+\frac{99}{10^{99}-1}\)

  Vì \(\frac{99}{10^{98}-1}>\frac{99}{10^{99}-1}\)nên \(10^2+\frac{99}{10^{98}-1}>10^2+\frac{99}{10^{99}-1}\)=> A > B

                                     Vậy A > B

4 tháng 11 2015

$\frac{10^{101-1}}{10^{102-1}}$  và  $\frac{10^{100+1}}{10^{101+1}}$
= $\frac{10^{100}}{10^{101}}$ và $\frac{10^{101}}{10^{102}}$
Mà $\frac{10^{100}}{10^{101}}$ <  $\frac{10^{101}}{10^{102}}$
=> $\frac{10^{101-1}}{10^{102-1}}$  < $\frac{10^{100+1}}{10^{101+1}}$

4 tháng 11 2015

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<