K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

Ta có : 

\(A=3^{2008}-3^{2007}+3^{2006}-...+3^2-3+1\)

\(3A=3^{2009}-3^{2008}+3^{2007}-...+3^3-3^2+3\)

\(3A+A=\left(3^{2009}-3^{2008}+3^{2007}-...+3^3-3^2+3\right)+\left(3^{2008}-3^{2007}+3^{2006}-...+3^2-3+1\right)\)

\(4A=3^{2009}+1\)

\(A=\frac{3^{2009}+1}{4}>\frac{1}{4}\)

Vậy \(A>\frac{1}{4}\)

Chúc bạn học tốt ~ 

27 tháng 3 2018

Ta có \(3A=3^{2009}-3^{2008}+...-3^2+3\)

           \(A=3^{2008}-3^{2007}+...-3+1\)

=> \(4A=3A+A=3^{2009}+1\)

=> \(A=\frac{3^{2009}+1}{4}\)\(\frac{3^{2009}}{4}+\frac{1}{4}>\frac{1}{4}\)

15 tháng 3 2017

Bài 1:

Ta có: 200920=(20092)10=403608110 ;  2009200910=2009200910

Vì 403608110< 2009200910 => 200920< 2009200910

15 tháng 3 2017

Bài 1:

Ta có:\(2009^{20}\)=\(2009^{10}\).\(2009^{10}\)

         \(20092009^{10}\)=(\(\left(2009.10001\right)^{10}=2009^{10}.10001^{10}\)

Vì 2009<10001\(\Rightarrow2009^{20}< 20092009^{10}\)

10 tháng 12 2016

Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn

 

10 tháng 12 2016

1. Xét 32^9 và 18^13

ta có 32^9=(2^5)^9=2^45

18^13>16^13=(2^4)^13=2^52

vì 18^13>2^52>2^45 nên 18^13>32^9

2.

a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)

Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)

mà A có tcung là 5 nên A \(⋮\)5

A có tổng các cso là 9 nên A\(⋮\)9

vậy A \(⋮\)45

d, bn xem có sai đề ko nhé

3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)

x+y+z=1/2 hoặc -1/2

còn lai bn tự tính nhé

4 tháng 3 2018

a) \(\frac{1}{8}.16^n=2^n\)

\(\frac{2^n}{16^n}=\frac{1}{8}\)

\(\left(\frac{2}{16}\right)^n=\frac{1}{8}\)

\(\left(\frac{1}{8}\right)^n=\frac{1}{8}\)

=> n = 1

8 tháng 8 2016

không

19 tháng 12 2017

em không thể trả lời được

cho em nhé 

kết bạn với em nhé