Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sách Giáo Khoa
Bài giải:
HD: Thực hiện phép nhân rồi so sánh kết quả với số còn lại.
a) (-67) . 8 < 0 ; b) 15 . (-3) < 15; c) (-7) . 2 < -7.
a) (-67).8 = -(|-67|.8)
= -536 < 0
b) 15.(-3) = -(15.|-3|)
= -45 < 15
c) (-7).2 = -(|-7|.2)
= -14 < -7
a) \(\dfrac{11}{21}+\dfrac{-4}{7}=\dfrac{11}{21}+\dfrac{-12}{21}=\dfrac{-1}{21}\)
b) \(\dfrac{5}{15}+\dfrac{14}{25}-\dfrac{12}{9}+\dfrac{2}{7}+\dfrac{11}{25}=\dfrac{1}{3}+\dfrac{14}{25}-\dfrac{4}{3}+\dfrac{2}{7}+\dfrac{11}{25}\)
\(=\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\left(\dfrac{14}{25}+\dfrac{11}{25}\right)+\dfrac{2}{7}=-1+1+\dfrac{2}{7}=\dfrac{2}{7}\)
c) \(\dfrac{2}{3}+\dfrac{5}{7}-\dfrac{3}{14}=\dfrac{28}{42}+\dfrac{30}{42}-\dfrac{9}{42}=\dfrac{49}{42}=\dfrac{7}{6}\)
d) \(\dfrac{2}{5}-\dfrac{3}{7}+\dfrac{9}{45}=\dfrac{2}{5}-\dfrac{3}{7}+\dfrac{1}{5}=\dfrac{14}{35}-\dfrac{15}{35}+\dfrac{7}{35}=\dfrac{6}{35}\)
e) \(\dfrac{21}{47}+\dfrac{9}{45}+\dfrac{26}{47}+\dfrac{45}{5}=\dfrac{21}{47}+\dfrac{1}{5}+\dfrac{26}{47}+\dfrac{45}{5}=\left(\dfrac{21}{47}+\dfrac{26}{47}\right)+\left(\dfrac{1}{5}+\dfrac{45}{5}\right)\)
\(=1+\dfrac{46}{5}=\dfrac{51}{5}\)
f) \(\dfrac{15}{12}-\dfrac{18}{13}+\dfrac{5}{13}-\dfrac{3}{12}=\left(\dfrac{15}{12}-\dfrac{3}{12}\right)+\left(-\dfrac{18}{13}+\dfrac{5}{13}\right)=1+\left(-1\right)=0\)
g) \(\dfrac{-8}{18}-\dfrac{15}{27}=\dfrac{-4}{9}-\dfrac{5}{9}=\dfrac{-9}{9}=-1\)
h)\(\dfrac{3}{7}+\dfrac{-5}{2}-\dfrac{3}{5}=\dfrac{30}{70}+\dfrac{-175}{70}-\dfrac{42}{70}=\dfrac{-187}{70}\)
i) \(\left(\dfrac{11}{12}:\dfrac{33}{16}\right).\dfrac{3}{5}=\dfrac{11}{12}.\dfrac{16}{33}.\dfrac{3}{5}=\dfrac{11.16.3}{12.33.5}=\dfrac{4}{15}\)
Ta có : \(A=\frac{3^{10}+1}{3^9+1}\) => \(A.\frac{1}{3}=\frac{3^{10}+1}{3^{10}+3}=\frac{\left(3^{10}+3\right)-2}{3^{10}+3}=1-\frac{2}{3^{10}+3}\)
\(B.\frac{1}{3}=\frac{3^9+1}{3^8+1}\Rightarrow B.\frac{1}{3}=\frac{3^9+1}{3^9+3}=\frac{\left(3^9+3\right)-2}{3^9+3}=1-\frac{2}{3^9+3}\)
Vì : \(\frac{2}{3^{10}+3}< \frac{2}{3^9+3}\) nên \(A>B\)
\(a,\frac{27}{82}< \frac{27}{83}=\frac{1}{3};\frac{26}{75}>\frac{25}{75}=\frac{1}{3}\)
nên\(\frac{27}{82}< \frac{26}{75}\)
\(b,\frac{49}{78}< \frac{52}{78}=\frac{2}{3};\frac{64}{95}>\frac{64}{96}=\frac{2}{3}\)
nên\(\frac{49}{78}< \frac{64}{95}\Rightarrow\frac{-49}{78}>\frac{64}{-95}\)
c, Rút gọn:\(\frac{2525}{2929}=\frac{25}{29};\frac{217}{245}=\frac{31}{35}\)
Ta có:\(1-\frac{25}{29}=\frac{4}{29};1-\frac{31}{35}=\frac{4}{35}\Rightarrow1-\frac{25}{29}>1-\frac{31}{35}\)
\(\Rightarrow\frac{25}{29}< \frac{31}{35}\)hay\(\frac{2525}{2929}< \frac{217}{245}\)
\(d,A=\frac{3^{10}+1}{3^9+1}=1+\frac{3}{3^9+1}\);\(B=\frac{3^9+1}{3^8+1}=1+\frac{3}{3^8+1}\)
Dễ dàng nhận thấy \(\frac{3}{3^9+1}< \frac{3}{3^8+1}\Rightarrow A< B\)
Xin lỗi bạn e, mk ko làm được. Chúc bạn học tốt
a: \(=\dfrac{-28}{36}+\dfrac{15}{36}-\dfrac{26}{36}=\dfrac{-39}{36}=\dfrac{-13}{12}\)
b: \(=\dfrac{11}{9}\left(\dfrac{15}{4}-\dfrac{7}{4}-\dfrac{5}{4}\right)=\dfrac{11}{9}\cdot\dfrac{3}{4}=\dfrac{11}{12}\)
c: \(=15+\dfrac{9}{7}+6+\dfrac{2}{3}-5-\dfrac{5}{9}\)
\(=16+\dfrac{88}{63}=\dfrac{1096}{63}\)
d: \(=\dfrac{5}{6}-\dfrac{1}{3}+\dfrac{2}{18}\)
\(=\dfrac{15-6+2}{18}=\dfrac{11}{18}\)
a) \(B=3+3^2+3^3+...+3^{120}\)
\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)
\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)
Suy ra B chia hết cho 3 (đpcm)
b) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)
\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)
\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)
Suy ra B chia hết cho 4 (đpcm)
c) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)
\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)
\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)
\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)
Suy ra B chia hết cho 13 (đpcm)
a) 5.9 > 0
b) (-3) . (-47) > 15
c) (-3) .(-2) > (-3)
d) (-9) .(-7) > (9)