Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\Rightarrow2^{225}< 3^{150}\)
b) \(\frac{22}{29}< \frac{24}{29}< \frac{24}{27}\)
mãi ko thấy ai làm tớ làm giúp nì =)
\(\text{ta có:}\hept{\begin{cases}\frac{2002}{2003}< 1\\\frac{2005}{2004}>1\end{cases}}\Rightarrow\frac{2005}{2004}>\frac{2002}{2003}\Rightarrow-\frac{2005}{2004}< -\frac{2002}{2003}\)
\(\text{ta có: }\hept{\begin{cases}-\frac{1}{10^5}< 0\\\frac{-9}{-10}>0\end{cases}}\Rightarrow\frac{-1}{10^5}< \frac{-9}{-10}\)
Ta có :
\(\frac{22}{29}< \frac{22}{27}< \frac{24}{27}\)
\(\Rightarrow\frac{22}{29}< \frac{24}{27}\)
Dễ lắm
Trước hết, bạn tìm ra câu trả lời
sau đó thì chép vô vở
Ủng hộ nhé
a)27^11=(3^3)^11=3^33
81^8=(3^4)8=3^32
vì 3^33>3^32 nên 27^11>81^8
b)ko biết làm chỉ biết 3^150>2^225
c)27^50=27^5x10=(27^5)^10=14348907^10
240^30=240^3x10=(240^3)^10=13824000^10
suy ra 27^50>240^30
a) Ta có: \(27^{11}=\left(3^3\right)^{^{11}}=3^{3.11}=3^{33}\)
\(81^8=\left(3^4\right)^{^8}=3^{4.8}=3^{32}\)
Vì \(3^{33}>3^{32}\)
nên \(27^{11}>81^8\)
b) Ta có: \(3^{150}=3^{2.75}=\left(3^2\right)^{^{75}}=9^{75}\)
\(2^{225}=2^{3.75}=\left(2^3\right)^{^{75}}=8^{75}\)
vì \(9^{75}>8^{75}\)
nên \(3^{150}>2^{225}\)
c) Ta có:
\(\frac{27^{50}}{240^{30}}=\frac{27^{30}.27^{20}}{240^{30}}=\frac{3^{30}.3^{30}.3^{30}.3^{20}.3^{20}.2^{20}}{3^{30}.80^{30}}\)
\(=\frac{3^{120}}{80^{30}}=\frac{\left(3^4\right)^{^{30}}}{80^{30}}=\frac{81^{30}}{80^{30}}\)
Vì \(\frac{81^{30}}{80^{30}}>1\)\(\Rightarrow\frac{27^{50}}{240^{30}}>1\)\(\Rightarrow27^{50}>240^{30}\)
Câu 6 :
Vì bình phương một số luôn lớn hơn hoặc bằng 0
Mà tổng của chúng bằng 0
\(\Rightarrow2x+3=3x-2=0\)
\(\Leftrightarrow2x-3x=-2-3\)
\(\Leftrightarrow-x=-5\)
\(\Leftrightarrow x=5\left(\text{Thỏa mãn}\right)\)
Vậy có số hữu tỉ x thỏa mãn
\(\hept{\begin{cases}\left(2x+3\right)^2\ge0\\\left(3x-2\right)^2\ge0\end{cases}\Rightarrow\left(2x+3\right)^2+\left(3x-2\right)^2\ge0}\)
dấu = xảy ra khi: \(\hept{\begin{cases}\left(2x+3\right)^2=0\\\left(3x-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\frac{2}{3}\end{cases}}}\)
=> ko có giá trị x nào t/m để \(\left(2x+3\right)^2+\left(3x-2\right)^2=0\)
p/s: Trần Thanh Phương sai rồi
Hính như đây là toán lp 4 nhỉ
ý a và b đều quy đồng mẫu số sau đó so sánh 2 phân số cùng mẫu số