Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{1}{\sqrt{x}}\)= \(\frac{2}{2\sqrt{x}}\)< \(\frac{2}{\sqrt{x}+\sqrt{x-1}}\)= 2(\(\sqrt{x}-\sqrt{x-1}\))
Áp dụng vào A \(\Rightarrow\)A < 1 + 2(\(\sqrt{2}-\sqrt{1}\)) + 2(\(\sqrt{3}-\sqrt{2}\)) + ... + 2(\(\sqrt{100}-\sqrt{99}\)) = 1 - 2 + \(2\sqrt{100}\)= \(2\sqrt{100}-1\)< \(2\sqrt{101}-1=B\)
\(\Rightarrow\)A < B
Ta có: \(\sqrt{1}< \sqrt{2};\sqrt{3}< \sqrt{4};\sqrt{5}< \sqrt{6};...;\sqrt{2009}< \sqrt{2010}\)
\(\Rightarrow\sqrt{1}+\sqrt{3}+\sqrt{5}+...+\sqrt{2009}< \sqrt{2}+\sqrt{4}+\sqrt{6}+...+\sqrt{2010}\)
\(\Rightarrow2\left(\sqrt{1}+\sqrt{3}+\sqrt{5}+...+\sqrt{2009}\right)< 2\left(\sqrt{2}+\sqrt{4}+\sqrt{6}+...+\sqrt{2010}\right)\)
\(\Rightarrow2\sqrt{1}+2\sqrt{3}+2\sqrt{5}+...+2\sqrt{2009}< 2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+...+2\sqrt{2010}\)
Vậy A < B.
a: \(2\sqrt{6}=\sqrt{24}\)
\(3\sqrt{3}=\sqrt{27}\)
mà 24<27
nên \(2\sqrt{6}< 3\sqrt{3}\)
b: \(\dfrac{2}{5}\sqrt{6}=\sqrt{\dfrac{4}{25}\cdot6}=\sqrt{\dfrac{24}{25}}\)
\(\dfrac{7}{4}\sqrt{\dfrac{1}{3}}=\sqrt{\dfrac{49}{16}\cdot\dfrac{1}{3}}=\sqrt{\dfrac{49}{48}}\)
mà 24/25<1<49/48
nên \(\dfrac{2}{5}\sqrt{6}< \dfrac{7}{4}\sqrt{\dfrac{1}{3}}\)