\(\sqrt{170}\)

b) \(\sqrt{6}\) ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

a) Ta có \(\sqrt{170}>\sqrt{169}\\\)

mà \(\sqrt{169}=13\)

=> \(\sqrt{170}>13\)

b) Ta có \(\sqrt{6}< \sqrt{9}\)

mà \(\sqrt{9}=3\)

=> \(\sqrt{6}< 3\)

c) ta có \(\sqrt{226}>\sqrt{225}\)

mà \(\sqrt{225}=15\)

=>\(\sqrt{226}>15\)

d) \(\sqrt{12}>\sqrt{7}\)

e)

Ta có\(\sqrt{150}< \sqrt{180}\)

mà \(\sqrt{150}=5\sqrt{6}\)

\(\sqrt{180}=6\sqrt{5}\)

=> \(5\sqrt{6}< 6\sqrt{5}\)

28 tháng 10 2016

Mít cứ bình phương lên là ok

(2\(\sqrt{7}\))2 =28 (1)

(3\(\sqrt{3}\))2 =27 (2)

vậy (1) > (2)

cứ thế mà làm là hết mít

22 tháng 10 2016

a] < b] < c] >

27 tháng 11 2016

a)>

b)<

c)>

27 tháng 11 2016

a, >

b, <

c, >

20 tháng 10 2019

a, Ta có

\(7^2=49\)

\(\sqrt{42}^2=42\)

\(\Rightarrow\sqrt{42}< 7\)

b, Ta có

\(\sqrt{12}+\sqrt{35}\Leftrightarrow\sqrt{12^2}+\sqrt{35^2}=12+35=47\)

\(6+\sqrt{21}\Leftrightarrow6^2+\sqrt{21^2}=36+21=57\)

\(\Rightarrow\sqrt{12}+\sqrt{35}< 6+\sqrt{21}\)

\(c,\)Ta có

\(4+\sqrt{33}\Leftrightarrow16+\sqrt{33^2}=16+33=49\)

\(\sqrt{29}+\sqrt{14}\Leftrightarrow\sqrt{29^2}+\sqrt{14^2}=29+14=43\)

\(\sqrt{29}+\sqrt{14}< 4+\sqrt{33}\)

Câu d làm nốt nhé lười lắm. Không biết có sai k nếu sai thì chỉ cho mik vs nhé mn

20 tháng 10 2019

a, Ta có: \(\sqrt{49}>\sqrt{42}\Leftrightarrow7>\sqrt{42}\)

b, Ta có: \(\sqrt{12}+\sqrt{35}< \sqrt{21}+\sqrt{36}=\sqrt{21}+6\)

c, Ta có: \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}>\sqrt{14}+\sqrt{29}\)

d, Ta có: \(\sqrt{48+\sqrt{149}}< \sqrt{48+\sqrt{169}}=\sqrt{48+13}=\sqrt{61}< \sqrt{324}=18\)

Mk gợi ý vậy thôi bn tự trình bày nhé
STD well

23 tháng 6 2018

Em mới học lớp 6 thôi để em thử àm xem nó ra sao:

a)<

b)<

c)<

e)<

a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)

\(7^2=49=7+42\)

mà \(15+2\sqrt{105}< 42\)

nên \(\sqrt{7}+\sqrt{15}< 7\)

b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)

\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)

mà \(2\sqrt{22}< 15+10\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)

12 tháng 11 2016

a) có \(\sqrt{2}\) <\(\sqrt{3}\)

5= \(\sqrt{25}\) >\(\sqrt{11}\)

=>\(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

12 tháng 11 2016

b)có \(\sqrt{21}>\sqrt{20}\)

-\(\sqrt{5}\) >-\(\sqrt{6}\)

=>\(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

20 tháng 10 2017

a/ \(\sqrt{10}< \sqrt{16}=4\)

b/ \(\sqrt{40}>\sqrt{36}=4\)

c/ \(\sqrt{15}+\sqrt{24}< \sqrt{16}+\sqrt{25}=4+5=9\)

d/ \(3\sqrt{2}=\sqrt{18}< \sqrt{20}=2\sqrt{5}\)

20 tháng 10 2017


a) \(\sqrt{10}\)và 4
4 = \(\sqrt{16}\)
Do \(\sqrt{16}>\sqrt{10}\)nên \(4>\sqrt{10}\)
b) \(\sqrt{40}\)và 6
6 = \(\sqrt{36}\)
Do \(\sqrt{40}>\sqrt{36}\)nên\(\sqrt{40}>6\)