Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh :
a ) 31^11 và 17^14
31^11 < 32^11= (25)11 = 2^55
=> 31^11 < 2^55
17^14>16^14=(24)14 = 2^56
=>17^14>2^56
=>31^11 < 2^55 < 2^56 < 17^14
=>31^11 < 17^14
b ) 3^500 và 7^300
3^500 = ( 35)100 = 243100
7^300 = ( 73)100 = 343100
=> 243100 < 343100
=> 3^500 < 7^300
Tìm x :
a ) 2x . 4 = 128
=> 2x = 32
=> 2x = 25
=> x = 5
b ) 2x . 22 = ( 23)2 = 64
=> 2x = 64 : 22 = 16
=> 2x = 24
=> x = 4
Bài cuối bạn tham khảo tại : Câu hỏi của Linh Phan - Toán lớp 6 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/198524999512.html
n.(2x-5)2=9
(2x-5)2=32
* 2x-5=3 * 2x-5=-3
2x=3+5 2x=-3+5
2x=8 2x=2
x=8:2 x=2:2
x=4 x=1
vậy x=4 hoặc x=1
o.(1-3x )3=-8
(1-3x)3=(-2)3
1-3x=-2
3x=1-(-2)
3x=3
x=3:3
x=1
vậy x=1
d)
đặt A = 1 + 2 + 22 + ... + 280
2A = 2 + 22 + 23 + ... + 281
2A - A = ( 2 + 22 + 23 + ... + 281 ) - ( 1 + 2 + 22 + ... + 280 )
A = 281 - 1 > 281 - 2
e)
đặt \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{899}{900}\)
\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{900}\right)\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)
\(A=29-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)
đặt \(B=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{29.30}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{29}-\frac{1}{30}\)
\(=1-\frac{1}{30}=\frac{29}{30}< 1\)
\(\Rightarrow A< 29\)
So sánh C và D biết
C=1+13+13^2+...+13^13/1+13+13^2+...+13^12
D=1+11+11^2+...+11^13/1+11+11^2+...+11^12
A = 101.102.103.104...108
A = 101+2+3+..+8
A = 1036
\(a.\)
\(A=\)\(\frac{10^{15}+1}{10^{16}+1}\)
\(10A=\) \(\frac{10\left(10^{15}+1\right)}{10^{16}+1}\)
\(10A=\) \(\frac{10^{16}+10}{10^{16}+1}\)
\(10A=\)\(\frac{10^{16}+1+9}{10^{16}+1}\)
\(10A=\frac{10^{16}+1}{10^{16}+1}+\frac{9}{10^{16}+1}\)
\(10A=1+\frac{9}{10^{16}+1}\)
\(B=\frac{10^{16}+1}{10^{17}+1}\)
\(10B=\frac{10\left(10^{16}+1\right)}{10^{17}+1}\)
\(10B=\frac{10^{17}+10}{10^{17}+1}\)
\(10B=\frac{10^{17}+1+9}{10^{17}+1}\)
\(10B=\frac{10^{17}+1}{10^{17}+1}+\frac{9}{10^{17}+1}\)
\(10B=1+\frac{9}{10^{17}+1}\)
\(\Rightarrow10B< 10A\Rightarrow B< A\)\(\text{( vì tự làm ) }\)
xin lỗi hôm qua mk đang làm thì phải đy học zoom học xong quên h mới nhơ ra làm típ :)
b
\(A=\frac{3}{8^3}+\frac{7}{8^4}=\frac{3}{8^3}+\frac{3}{8^4}+\frac{4}{8^4}\)
\(B=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\)
Vì \(\frac{4}{8^4}< \frac{4}{8^3}\)=.> A < B
a) \(\left(-2\right)+\left(-12\right)+17+...+\left(-52\right)+57\) \(57\)
\(\Leftrightarrow\left(\left(-2\right)+7\right)+\left(\left(-12\right)+17\right)+...+\left(\left(-52\right)+57\right)\)
\(\Leftrightarrow5+5+...+5=5\times6=30\)
b) 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 +... - 79 - 80 - 81
= (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +...+ (77 + 78 - 79 - 80) - 81
= -4 + (-4) +...+ (-4) - 81
= -4 . 20 - 81
= -80 - 81 = -161
\(A=3+3^2+3^3+...+3^{2021}\)
\(\Rightarrow A+1=1+3+3^2+3^3+...+3^{2021}\)
\(A+1=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2019}+3^{2020}+3^{2021}\right)\)
\(A+1=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{2019}\left(1+3+3^2\right)\)
\(A+1=13.3^3.13+...+3^{2019}.13\)
\(A+1=13\left(1+3^3+...+3^{2019}\right)\)
\(\Rightarrow A+1⋮13\)
\(\Rightarrow A:13d\text{ư}12\)
ta có :
A = 3 + 32 + ( 33 +34 + 35 ) + ( 36 + 37 + 38 ) + ... + ( 32019 +32020 + 32021 )
Đặt B = ( 33 +34 + 35 ) + ( 36 + 37 + 38 ) + ... + ( 32019 +32020 + 32021 )
B = 351 + ( 33 .33 + 33 . 34 + 33 .35 ) + .... + ( 32016 .33 + 32016 .34 + 32016 . 35 )
B = 351 + 351 . 33 + ... + 351 .32016
B = 351 ( 1 + 33 + ... + 32016 ) \(⋮\)11
Thay B vào A => 3 + 32 + B chia 11 dư 3 + 32
ta có 3 + 32 = 3 + 9
= 12
mà 12 \(\equiv\)-1 ( mod 13 )
Vậy A chia 13 dư -1
học CLB toán à : > ? có bài nào hay hay ib mk nha ^^
Học tốt
#Gấu
a) (-12).8 < (-19).3.
b) 11.(-2) > (-3).10.
c) (-16). 10 > (-32).11.
d) (-17).3 < (-22).2.