\(2013.2015+2014.2016\) và B= \(2014^2+2015^2-2\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

Dễ c/m đẳng thức: \(\left(n-1\right)\left(n+1\right)=n^2-1\)

Lúc đó: \(A=2014^2-1+2015^2-1=2014^2+2015^2-2=B\)

Vậy A = B

15 tháng 7 2019

\(A=2013.2015+2014.2016\)

   \(=\left(2015-2\right).2015+2014\left(2014+2\right)\)

   \(=(2015^2-4030)+(2014^2+4028)\)

   \(=\left(2015^2+2014^2\right)-\left(4030-4028\right)\)

  \(=2014^2+2015^2-2\)

\(\Rightarrow A=B\)

(Mình giải theo cách lớp 8 nhé)

\(A=1^2-2^2+3^2-4^2+...+2015^2\)

    \(=1+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2015^2-2014^2\right)\)

    \(=1+\left(3-2\right)\left(3+2\right)+\left(5-4\right)\left(5+4\right)+...+\left(2015-2014\right)\left(2015+2014\right)\)

    \(=1+\left(2+3\right)+\left(4+5\right)+...+\left(2014+2015\right)\)

    \(=1+2+3+...+2015=B\)

             \(\Leftrightarrow A=B\)

4 tháng 7 2019

Số số hạng của tổng B là:

\(\frac{\left(2015-1\right)}{1}+1=2015\)(số hạng)

\(B=\frac{\left(1+2015\right)\cdot2015}{2}=2031120\)

\(A=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\left(5^2-6^2\right)+...+\left(2013^2-2014^2\right)+2015^2\)

\(A=\left(-3\right)+\left(-7\right)+\left(-11\right)+...+\left(-4027\right)+4060225\)

Số số hạng của tổng A thuộc nguyên âm là:

\(\frac{2014}{2}=1007\)(số hạng)

\(A=\frac{\left(-3\right)+\left(-4027\right)\cdot1007}{2}+4060225\)

\(A=\left(-2029105\right)+4060225\)

\(A=2031120\)

Mà \(2031120=2031120\)

\(\Rightarrow A=B\)

4 tháng 7 2019

\(A=1^2-2^2+3^2-4^2+...-2014^2+2015^2\)

\(A=1+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2015^2-2014^2\right)\)

\(A=1+\left(3-2\right).\left(2+3\right)+\left(4-5\right).\left(4+5\right)+...+\left(2015-2014\right).\left(2014+2015\right)\)

\(A=1+2+3+4+...+2015=B\)

13 tháng 1 2017

bạn xem lại đề thử có sai không?

13 tháng 1 2017

Ta có:

\(\frac{2015^2-2014^2}{2015^2+2014^2}-\frac{\left(2015-2014\right)^2}{\left(2015+2014\right)^2}\)

\(=\frac{2015+2014}{2015^2+2014^2}-\frac{1}{\left(2015+2014\right)^2}\)

Ta thấy phân số thứ nhất có tử lớn hơn phân số thứ 2 và có mẫu bé hơn nên phân số thứ nhất > phâm số thứ 2

Hay \(\frac{2015^2-2014^2}{2015^2+2014^2}>\frac{\left(2015-2014\right)^2}{\left(2015+2014\right)^2}\)

6 tháng 10 2018

1)

a)\(A=2013.2015=2013.\left(2014+1\right)=2013.2014+2013\)

\(B=2014^2=2014.\left(2013+1\right)=2014.2013+2014\)

Ta có: \(2014.2013+2014>2013.2014+2013\)

\(\Rightarrow2014^2>2013.2015\)

\(\Rightarrow B>A\)

Vậy \(B>A\)

b) \(A=4.\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=2.4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3-1\right).\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^{16}-1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\)

\(\Rightarrow A=\frac{3^{128}-1}{2}< 3^{128}-1=B\)

\(\Rightarrow A< B\)

Vậy \(A< B\)

2)

a)\(9x^2-6x+3=\left(3x\right)^2-2.3x.1+1^2+2\)

                           \(=\left(3x-1\right)^2+2\)

Ta có: \(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(3x-1\right)^2+2\ge2\forall x\)

\(\Rightarrow\left(3x-1\right)^2+2>0\forall x\)

                                đpcm

b)\(x^2+y^2+2x+6y+16\)

\(=\left(x^2+2x+1\right)+\left(y^2+2.y.3+3^2\right)+6\)

\(=\left(x+1\right)^2+\left(y+3\right)^2+6\)

Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x+1\right)^2+\left(y+3\right)^2+6\ge6\forall x;y\)

\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+6>0\)

                                         đpcm

Tham khảo nhé~

6 tháng 10 2018

1.

a) A = 2013.2015 = (2014 - 1)(2014 + 1) = 20142 - 1

Vì 20142 - 1 < 20142 => A < B

Vậy A < B

b) \(A=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\Leftrightarrow A=\frac{3^{128}-1}{2}\)

\(\Rightarrow A< B\)

Vậy A < B

Bài 2:

a) \(9x^2-6x+2=\left(3x\right)^2-2.3x+1+2=\left(3x-1\right)^2+2\)

Vì \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+2>0\)

=> 9x2 - 6x + 2 luôn nhận giá trị dương với mọi x

b) \(x^2+y^2+2x+6y+16=\left(x^2+2x+1\right)+\left(y^2+6y+9\right)+6=\left(x+1\right)^2+\left(y+3\right)^2+6\)

Vì \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+6>0\)

=> x2 + y2 + 2x + 6y + 16 luôn nhận giá trị dương với mọi x

29 tháng 6 2019

a.D=4a(3+b)+a*2a-3ab=12a+4ab+2a2-3ab=2a2+ab+12a=a(2a+b+12)

b.bạn viết đề kiểu j vậy

29 tháng 6 2019

Ko sai đề nha bn

25 tháng 3 2017

a^2014+b^2014+c^2014=a^2015+b^2015+c^2015=1

<=> (a^2014-a^2015)+(b^2014-b^2015)+(c^2014-c^2015)=0

suy ra \(\hept{\begin{cases}a^{2014}=a^{2015}\\b^{2014}=b^{2015}\\c^{2014}=c^{2015}\end{cases}}\)

<=> \(\hept{\begin{cases}\orbr{\begin{cases}a=1\\a=0\end{cases}}\\\orbr{\begin{cases}b=1\\b=0\end{cases}}\\\orbr{\begin{cases}c=1\\c=0\end{cases}}\end{cases}}\)

<=> a=1 hoặc a=0; b=1 or b=0; c=1;c=0 mà a^2014+b^2014+c^2014=1

suy ra a,b,c có 2 trong 3 số bằng 0 và 1 số bằng 1

P=1