K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

a)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)

\(2A=1-\frac{1}{3^{100}}\)

\(\Rightarrow2A< 1\)

\(\Rightarrow A< \frac{1}{2}\)

15 tháng 5 2018

ta có: \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{100}}+\frac{1}{3^{101}}\)

\(\Rightarrow A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^{101}}< \frac{1}{3}\)

\(\Rightarrow\frac{2}{3}A< \frac{1}{3}\)

\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)

\(\Rightarrow A< \frac{1}{2}\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:

$A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}$

$3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}$

$\Rightarrow 3A-A=1-\frac{1}{3^{100}}$

$\Rightarrow 2A=1-\frac{1}{3^{100}}<1$

$\Rightarrow A< \frac{1}{2}$

$\Rightarrow A< B$

5 tháng 3 2020

P = 1 + 32 + 34 + 36+......+3100

32 P= 32(1 + 32 + 34 + 36+......+3100)

32P= 32 + 34 + 36+......+3100+3102

32P= (32 + 34 + 36+......+3100+3102)- (1 + 32 + 34 + 36+......+3100 )

32 P= 3102 - 1

P= (3102 -1) :9

Q = (917)3 / 23

Q = 951 / 8

Q = (32)51 /8

Q = 3102 /8

Q= 3102 :8

=> P > Q

Vậy...

K chắc nha b

5 tháng 3 2020

xét P=1+3^2+3^4+3^6+3^8+....+3^100

=> 3^2.P=3^2+3^4+3^6+3^8+3^10+...+3^102

9.P-P=(3^2+3^4+3^6+3^8+3^10+...+3^102)-(1+3^2+3^4+3^6+3^8+....+3^100)

8P=3^102-1

P=\(\frac{3^{102}-1}{8}\)

Xét Q :

\(\left(\frac{9^{17}}{2}\right)^3=\left[\frac{\left(3^2\right)^{17}}{2}\right]^3=\frac{\left(3^{34}\right)^3}{8}=\frac{3^{102}}{8}\)

mà 3^102-1<3^102

=>P<Q

30 tháng 3 2020

A là tích của 99 số âm.Do đó :

\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{100^2}\right)\)

\(=\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{9999}{100^2}=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\frac{3\cdot5}{4^2}\cdot...\cdot\frac{99\cdot101}{100^2}\)

\(-A=\frac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot99\cdot100}\cdot\frac{3\cdot4\cdot5\cdot....\cdot101}{2\cdot3\cdot4\cdot...\cdot100}=\frac{1}{100}\cdot\frac{101}{2}=\frac{101}{200}>\frac{1}{2}\)

Do đó : \(A< B\)

4 tháng 9 2020

Giúp với cần gấp!!!!!!!

4 tháng 9 2020

Đặt \(A=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

\(3A=3\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\)

\(3A=1+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3A-A=2A\)

\(=1+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\)

\(=1+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{1}{3^1}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

\(=1-\frac{1}{3^{100}}\)

\(2A=1-\frac{1}{3^{100}}\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)