Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
\(\frac{2017}{2018}+\frac{2018}{2019}\)và \(\left(\frac{2017+2018}{2018+2019}\right)\)mk chữa lại đề luôn đó
Ta tách :
\(\frac{2017}{\left(2018+2019\right)+2018}\)
đến đây ta tách
\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)
vậy....
mấy câu khác tương tự
2) \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{\frac{2}{2003}+\frac{2}{2004}+\frac{2}{2005}}\)
= \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{2.\frac{1}{2003}+2.\frac{1}{2004}+2.\frac{1}{2005}}\)
=\(\frac{1\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}{2.\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}\)
= \(\frac{1}{2}\)
3) \(2013+\left(\frac{2013}{1+2}\right)+\left(\frac{2013}{1+2+3}\right)+...+\left(\frac{2013}{1+2+3+...+2012}\right)\)
= \(2013.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}\right)\)
= \(2013.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{2025078}\right)\)
= \(2013.2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4050156}\right)\)
=\(4026.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)\)
= \(4026.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)
= \(4026.\left(1-\frac{1}{2013}\right)\)
= \(4026.\frac{2012}{2013}\)
=\(4024\)
cái này là khi chiều mới thi nầy
Giải:
Ta có:A=1.2+2.3+3.4+...+2017.2018
3A=1.2.3 2.3.3+...+2017.2018.3
=1.2.(3-0)+2.3.(4-1)+...+2017.2018.(2019-2016)
=1.2.3+2.3.4+...+2017.2018.2019-1.2.0-2.3.1-...-2017.2018.1016
=2017.2018.2019-1.2.0
=2017.2018.2019
=>A=2017.2018.2019/3=2018.(2017.2019)/3
Và B=20183/3=2018.2018.2018/3=2018.(2018.2018)/3
Lại có: 2017.2019=2017.(2018+1)=2017.2018+2017
2018.2018=(2017+1).2018=2017.2018+2018
Mà 2017.2018+2017<2017.2018+2018 =>2017.2019<2018.2018
=>2018.(2017.2019)<2018.(2018.2018)
=>A=2018.(2017.2019)/3<2018.(2018.2018)/3=B
=>A<B
Vậy A<B
Chúc Công Chúa Bloom học giỏi!!!
Ta có: A= 1+2+2^2+2^3+...+2^2018
2A = 2+2^2+2^3+2^4+...+2^2019
2A-A=A= 2^2019-1 = (2^2017.4) -1
Mà B=5.2^2017
=> (2^2017.4) -1 < 5.2^2017
=> A < B
A=1*2+2*3+3*4+...+2017*2018
3A=1*2*3+2*3*(4-1)+...+2017*2018*(2019-2016)
3A=1*2*3+2*3*4-1*2*3+...+2017*2018*2019-2016*2017*2018
3A=2017*2018*2019
A=\(\frac{2017.2018.2019}{3}\)
mk chỉ biết tính a thôi
Ta có :
20173 + 20172 = 20172 . 2017 + 20172 . 1 = 20172 . ( 2017 + 1 ) = 20172 . 2018 < 20182 . 2018 = 20183
Vậy 20173 + 20172 < 20183