K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VA
3
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
2
9 tháng 5 2018
\(A=\frac{10^{2017}}{10^{2018+1}}=\frac{10^{2017}}{10^{2019}}=\frac{1}{10^2}\)
Tương Tự với \(B=\frac{1}{10^2}\)
\(\Rightarrow A=B\)
DL
0
24 tháng 3 2019
c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)
Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)
\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)
\(\Rightarrow M>N\)
DT
1
5 tháng 10 2019
Ta có : 2019^10+2019^9=2019^9.(2019+1)=2019^9.2020
Mà 2020^10>2019^9.2020
=>2020^10>2019^10+2019^9
Áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)
Ta có: \(\frac{10^{2019}-1}{10^{2020}-1}< \frac{10^{2019}-1+11}{10^{2020}-1+11}=\frac{10^{2019}+10}{10^{2020}+10}=\frac{10.\left(10^{2018}+1\right)}{10.\left(10^{2019}+1\right)}=\frac{10^{2018}+1}{10^{2019}+1}\)
\(\Rightarrow\frac{10^{2019}-1}{10^{2020}-1}< \frac{10^{2018}+1}{10^{2019}+1}\)
Đặt \(A=\frac{10^{2019}-1}{10^{2020}-1}\)
\(B=\frac{10^{2018}+1}{10^{2019}+1}\)
Dễ thấy \(A< 1\)
Áp dụng kết quả bài trên nếu \(\frac{a}{b}< 1\)thì \(\frac{a+m}{b+m}>\frac{a}{b}\)với m>0
Vậy \(A=\frac{10^{2019}-1}{10^{2020}-1}< \frac{\left[10^{2019}-1\right]+11}{\left[10^{2020}-1\right]+11}=\frac{10^{2019}+10}{10^{2020}+10}\)
\(A< \frac{10\left[10^{2018}+1\right]}{10\left[10^{2019}+1\right]}=\frac{10^{2018}+1}{10^{2019}+1}=B\)
Do đó : A<B