\(1+2+2^2+2^3+...+2^{50}\)

Mai mk t...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

\(S=1+2+2^2+...........+2^{50}\)

\(\Leftrightarrow2S=2+2^2+...........+2^{50}+2^{51}\)

\(\Leftrightarrow2S-S=\left(2+2^2+.........+2^{51}\right)-\left(1+2+2^2+..........+2^{50}\right)\)

\(\Leftrightarrow S=2^{51}-1\)

\(\Leftrightarrow S< 2^{51}\)

5 tháng 11 2017

có phép trừ ko

nếu ko có thì tổng đó lớn hơn 251

rõ ràng mà

5 tháng 11 2017

bạn tham khảo nha, cách làm như vậy đó

Câu hỏi của Nguyễn Thị Mai Ca - Toán lớp 7 - Học toán với OnlineMath 

5 tháng 11 2017

ban kia lam dung roi do

k tui nha 

thanks

5 tháng 11 2017

\(S=\dfrac{1}{2}-\dfrac{1}{3.7}-\dfrac{1}{7.11}-...........-\dfrac{1}{23.27}\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3.7}+\dfrac{1}{7.11}+..........+\dfrac{1}{23.27}\right)\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+.......+\dfrac{1}{23}-\dfrac{1}{27}\right)\)

\(=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\)

\(=\dfrac{1}{2}-\dfrac{8}{27}\)

\(=\dfrac{11}{54}\)

5 tháng 11 2017

Bạn xem lại đề bài đi chứ thế này thì cần j phải so sánh nx

Này nhé: đã có \(\dfrac{1}{2}=2^{-1}\)\(2^{-1}< 2^{51}\) là điều quá rõ rồi

Đã thế lại còn trừ liên hoàn từ... (đấy nói chung là phần sau) thì rõ ràng hiển nhiên là \(S< 2^{51}\) còn cái j nx

Chúc bn học tốt banhbanhbanhbanhbanh

9 tháng 11 2017

Ta có :\(A=3+3^2+3^3+...+3^{2008}\)(1)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2009}\)(2)

Lấy (2) trừ đi 1 ta có :

\(\Rightarrow2A=3^{2009}-3\)

Ta lại có :

\(2A+3=3^x\)

\(\Rightarrow3^{2009}=3^x\)

\(\Rightarrow x=2009\)

27 tháng 7 2016

2S=2(1+2+22+...+250)

2S=2+22+...+251

2S-S=(2+22+...+251)-(1+2+22+...+250)

S=251-1<251

=>S<251

9 tháng 11 2017

Ta có: \(A=3+3^2+3^3+...+3^{2008}\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2009}\)

Trừ \(3A-A=3^2+3^3+3^4+...+3^{2009}-3-3^2-3^3-...-3^{2008}\)

\(\Rightarrow2A=3^{2009}-3\)

\(2A=3^x-3\)

\(\Rightarrow3^x=3^{2009}\)

\(\Rightarrow x=2009.\)

Vậy x = 2009.

10 tháng 11 2017

\(a=3+3^2+3^3+...+3^{2008}\)

\(3a=3^2+3^3+3^4+...+3^{2009}\)

\(3a-a=\left(3^2+3^3+3^4+...+3^{2009}\right)-\left(3+3^2+3^3+...+3^{2008}\right)\)

\(2a=3^{2009}-3\)

\(2a+3=3^{2009}=3^x\)

\(x=2009\)

21 tháng 10 2017

a)  \(=\left(\frac{-1}{5}^3\right)^{100}va\left(\frac{-1}{3}^5\right)^{100}\)

\(=\left(\frac{-1}{125}\right)^{100}va\left(\frac{-1}{243}\right)^{100}\)

Mà \(\frac{-1}{125}>\frac{-1}{243}\)

\(\Rightarrow\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)

b)\(2^{27}=8^9;3^{18}=9^9\)

25 tháng 10 2016

a.0.135<0.(135)

b.2/7<0.(3)

c.2.1(467)<43/20

d.  >

e.>

f.>

20 tháng 10 2021

6/11 và 0,54554554

21 tháng 10 2017

a) \(\left(-\dfrac{1}{5}\right)^{300}=\left(-\dfrac{1}{5}\right)^{3.100}=\left(-\dfrac{1}{125}\right)^{100}\)

\(\left(-\dfrac{1}{3}\right)^{500}=\left(-\dfrac{1}{3}\right)^{5.100}=\left(-\dfrac{1}{243}\right)^{100}\)

\(\left(-\dfrac{1}{125}\right)^{100}< \left(-\dfrac{1}{243}\right)^{100}\)

Nên \(\left(-\dfrac{1}{5}\right)^{300}< \left(-\dfrac{1}{3}\right)^{500}\)

b) \(2^{27}=2^{3.9}=\left(2^3\right)^9=8^9\)

\(3^{18}=3^{2.9}=\left(3^2\right)^9=9^9\)

\(8^9< 9^9\)nên \(2^{27}< 3^{18}\)

21 tháng 10 2017

b) Ta có: 227 = (23)9 = 89

...............318 = (32)9 = 99

Vì: 8 < 9

Nên: 89 < 99

Hay: 227 < 318