K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2024

Sửa đề: 

`S = 1/3 + 2/(3^2) + 3/(3^3) + ... + 100/(3^100)`

`3S = 1 + 2/3 + 3/(3^2) + ... + 100/(3^99)`

`3S - S = 1 - 100/3^100 + (2/3 - 1/3) + (3/(3^2) - 2/(3^2)) + ... + (100/(3^99) - 99/(3^99)) `

`2S = 1 - 100/(3^100) + 1/3 + 1/(3^2) + ... + 1/(3^99) `

Đặt `A = 1/3 + 1/(3^2) + ... + 1/(3^99) `

`=> 3A = 1 + 1/3 + ... + 1/(3^98) `

`=> 3A - A = (1 + 1/3 + ... + 1/(3^98)) - ( 1/3 + 1/(3^2) + ... + 1/(3^99) )`

`=> 2A = 1 - 1/(3^99)`

`=> A = (1 - 1/(3^99))/2`

Khi đó: `2S = 1 - 100/(3^100) + (1 - 1/(3^99))/2`

`S = 1/2 - 100/(2.3^100) + (1 - 1/(3^99))/4`

Ta có: `{(1/2 - 100/(2.3^100) < 1/2),((1 - 1/(3^99))/4 < 1/4):}`

`=>  1/2 - 100/(2.3^100) + (1 - 1/(3^99))/4 < 1/2 + 1/4 = 3/4`

Hay `S < 3/4 (đpcm)`

8 tháng 8 2024

3|4lớn hơn

27 tháng 9 2018

Ta có:

\(3D=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)

\(3D-D=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)

\(2D=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

Đặt \(E=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3E=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3E-E=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(2E=3-\frac{1}{3^{99}}< 3\)

\(E< \frac{3}{2}\)

\(2D< \frac{3}{2}-\frac{1}{3^{100}}< \frac{3}{2}\)

\(D< \frac{3}{4}\)

Vậy...

5 tháng 3 2020

P = 1 + 32 + 34 + 36+......+3100

32 P= 32(1 + 32 + 34 + 36+......+3100)

32P= 32 + 34 + 36+......+3100+3102

32P= (32 + 34 + 36+......+3100+3102)- (1 + 32 + 34 + 36+......+3100 )

32 P= 3102 - 1

P= (3102 -1) :9

Q = (917)3 / 23

Q = 951 / 8

Q = (32)51 /8

Q = 3102 /8

Q= 3102 :8

=> P > Q

Vậy...

K chắc nha b

5 tháng 3 2020

xét P=1+3^2+3^4+3^6+3^8+....+3^100

=> 3^2.P=3^2+3^4+3^6+3^8+3^10+...+3^102

9.P-P=(3^2+3^4+3^6+3^8+3^10+...+3^102)-(1+3^2+3^4+3^6+3^8+....+3^100)

8P=3^102-1

P=\(\frac{3^{102}-1}{8}\)

Xét Q :

\(\left(\frac{9^{17}}{2}\right)^3=\left[\frac{\left(3^2\right)^{17}}{2}\right]^3=\frac{\left(3^{34}\right)^3}{8}=\frac{3^{102}}{8}\)

mà 3^102-1<3^102

=>P<Q

23 tháng 7 2015

a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(A=1-\frac{1}{2^{50}}<1\)

Vậy \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}<1\)

b)\(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)

\(3B-B=2B=1-\frac{1}{3^{100}}\)

\(B=\frac{1-\frac{1}{3^{100}}}{2}\)

\(1-\frac{1}{3^{100}}<1\)nên\(\frac{1-\frac{1}{3^{100}}}{2}<\frac{1}{2}\)

Vậy \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}<\frac{1}{2}\)

c) \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}\)

\(4C=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}\)

\(4C-C=3C=1-\frac{1}{4^{1000}}\)

\(C=\frac{1-\frac{1}{4^{1000}}}{3}\)

\(1-\frac{1}{4^{1000}}<1\)nên\(\frac{1-\frac{1}{4^{1000}}}{3}<\frac{1}{3}\) 

Vậy \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}<\frac{1}{3}\)

 

22 tháng 12 2016

Bạn Detective_conan giải đúng đấy!

20 tháng 8 2018

a)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)

\(2A=1-\frac{1}{3^{100}}\)

\(\Rightarrow2A< 1\)

\(\Rightarrow A< \frac{1}{2}\)