Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{1}\)+\(\sqrt{9}\)+\(\sqrt{25}\)+\(\sqrt{49}\)+\(\sqrt{81}\)
=1+3+5+7+9
=25
b)=\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{4}\)
=\(\dfrac{6}{12}\)+\(\dfrac{4}{12}\)+\(\dfrac{2}{12}\)+\(\dfrac{3}{12}\)
=\(\dfrac{15}{12}\)
c) =0,2+0.3+0,4
= 0.9
d) =9-8+7
=8
j) =1,2-1,3+1.4
= (-0,1)+1,4
=1,4
g) \(\dfrac{2}{5}\)+\(\dfrac{5}{2}\)+\(\dfrac{9}{10}\)+\(\dfrac{3}{4}\)
= (\(\dfrac{4}{10}\)+\(\dfrac{15}{10}\)+\(\dfrac{9}{10}\))+\(\dfrac{3}{4}\)
= \(\dfrac{14}{5}\)+\(\dfrac{3}{4}\)
=\(\dfrac{56}{20}\)+\(\dfrac{15}{20}\)
= \(\dfrac{71}{20}\)
Nhớ tick cho mk nha~
Bài 1:
a) Ta có: \(\left(0.125\right)\cdot\left(-3\cdot7\right)\cdot\left(-2\right)^3\)
\(=\frac{1}{8}\cdot\left(-21\right)\cdot\left(-8\right)\)
\(=\frac{1}{8}\cdot168\)
\(=21\)
b) Ta có: \(\sqrt{36}\cdot\sqrt{\frac{25}{16}}+\frac{1}{4}\)
\(=\sqrt{36\cdot\frac{25}{16}}+\frac{1}{4}\)
\(=\sqrt{\frac{225}{4}}+\frac{1}{4}\)
\(=\frac{15}{2}+\frac{1}{4}\)
\(=\frac{31}{4}\)
c) Ta có: \(\sqrt{\frac{4}{81}}:\sqrt{\frac{25}{81}}-1\frac{2}{5}\)
\(=\frac{2}{9}:\frac{5}{9}-\frac{7}{5}\)
\(=\frac{2}{5}-\frac{7}{5}=-1\)
d) Ta có: \(0,1\cdot\sqrt{225}\cdot\sqrt{\frac{1}{4}}\)
\(=0,1\cdot15\cdot\frac{1}{2}=\frac{3}{4}\)
a) \(\sqrt{\frac{4}{81}}:\sqrt{\frac{25}{81}}-1\frac{2}{5}\)
\(=\frac{2}{9}:\frac{5}{9}-\frac{7}{5}\)
\(=\frac{2}{5}-\frac{7}{5}\)
\(=-1.\)
b) \(\sqrt{36}.\sqrt{\frac{25}{16}}+\frac{1}{4}\)
\(=6.\frac{5}{4}+\frac{1}{4}\)
\(=\frac{15}{2}+\frac{1}{4}\)
\(=\frac{31}{4}.\)
c) \(1\frac{1}{2}+\frac{4}{7}:\left(-\frac{8}{9}\right)\)
\(=\frac{3}{2}+\frac{4}{7}:\left(-\frac{8}{9}\right)\)
\(=\frac{3}{2}+\left(-\frac{9}{14}\right)\)
\(=\frac{6}{7}.\)
d) \(1,17-0,4.\left(\frac{1}{2}\right)^2-\frac{1}{-5}\)
\(=\frac{117}{100}-\frac{2}{5}.\frac{1}{4}-\left(-\frac{1}{5}\right)\)
\(=\frac{117}{100}-\frac{1}{10}+\frac{1}{5}\)
\(=\frac{107}{100}+\frac{1}{5}\)
\(=\frac{127}{100}.\)
Chúc bạn học tốt!
a, \(\frac{4}{81}:\sqrt{\frac{25}{81}-1\frac{2}{5}}\)
\(\Rightarrow\frac{4}{81}:\frac{5}{9}-\frac{7}{5}\)
\(\Rightarrow\frac{4}{81}.\frac{9}{5}-\frac{7}{5}\)
\(\Rightarrow\frac{4}{9}.\frac{1}{5}-\frac{7}{5}\)
\(\Rightarrow\frac{-59}{45}\)
b,\(\sqrt{36}.\sqrt{\frac{25}{16}+\frac{1}{4}}\)
\(\Rightarrow6.\frac{5}{4}+\frac{1}{4}\)
\(\Rightarrow\frac{15}{2}+\frac{1}{4}\)
\(\Rightarrow\frac{31}{4}\)
c,\(1\frac{1}{2}+\frac{4}{7}:\frac{-8}{9}\)
\(\Rightarrow\frac{3}{2}-\frac{4}{7}.\frac{-8}{9}\)
\(\Rightarrow\frac{3}{2}-\frac{9}{14}\)
\(\Rightarrow\frac{6}{7}\)
d, \(1,17-\left(0,4.\frac{1}{2}\right)^2-\frac{1}{5}\)
\(\Rightarrow\frac{117}{100}-\left(\frac{1}{5}\right)^2-\frac{1}{5}\)
\(\Rightarrow\frac{117}{100}-\frac{1}{25}-\frac{1}{5}\)
\(\Rightarrow\frac{93}{100}\)
\(\sqrt{16}+\sqrt{81}+\sqrt{1521}\)
\(=4+9+39\)
\(=52\)
a) \(\sqrt{4}+\sqrt{4}\)
\(=2+2\)
\(=4\)
b) \(\sqrt{9+9+9+9+9.5}+\sqrt{81}\)
\(=9+9\)
\(=18\)
c) \(\sqrt{15}+\sqrt{15}=2\sqrt{15}\)
a) \(\sqrt{4}\)+ \(\sqrt{4}\)= 2 + 2 = 4
b) \(\sqrt{9+9+9+9+9.5}\)+ \(\sqrt{81}\)= \(\sqrt{81}\)+\(\sqrt{81}\)= 9 + 9 = 18
c) \(\sqrt{15}\)+\(\sqrt{15}\)= 7,745966692
\(\frac{2}{3}\sqrt{81}-\left(\frac{-3}{4}\right):\sqrt{\frac{9}{64}}-\left(\frac{\sqrt{5}}{2011}\right)^0\)
\(=\frac{2}{3}\cdot9+\frac{3}{4}\cdot\frac{8}{3}-1\)
\(=6+2-1\)
\(=7\)
\(\frac{2}{3}\sqrt{81}-\left(-\frac{3}{4}\right):\sqrt{\frac{9}{64}}-\left(\frac{\sqrt{5}}{2011}\right)^0=\frac{2}{3}.9-\left(-2\right)-1=6+2-1=7\)
a) \(\sqrt{0,09}-\sqrt{0,64}=\frac{-1}{2}=-0,5\)
b) \(0,1\cdot\sqrt{225}-\sqrt{\frac{1}{4}}=0,1\cdot15-\frac{1}{2}=1\)
c) \(\sqrt{0,36}\cdot\sqrt{\frac{25}{16}+\frac{1}{4}}=\frac{3\sqrt{29}}{20}\)
d) đề baì có sai ko ban?
\(\sqrt{\frac{1}{9}+\frac{1}{16}}\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}\)