Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bình phương 2 vế ta có:
vế 1 bằng 50+2=52
vế 2 bằng 50+ 10+ 2 = 62
vậy (1) < (2)
a) \(\sqrt{27}+\sqrt{12}>\sqrt{25}+\sqrt{9}=5+3=8\)
\(\Rightarrow\sqrt{27}+\sqrt{12}>8\)
b) \(\sqrt{50+2}=\sqrt{52}< \sqrt{64}=8\)
\(\sqrt{50}+\sqrt{2}>\sqrt{49}+\sqrt{1}=7+1=8\)
=> \(\sqrt{50+2}< 8< \sqrt{50}+\sqrt{2}\)
\(\Rightarrow\sqrt{50+2}< \sqrt{50}+\sqrt{2}\)
\(\sqrt{50+2}\)
\(=\sqrt{52}< 8\)
\(\sqrt{50}+\sqrt{2}>\sqrt{49}+\sqrt{1}=8\)
Đặt \(A=\sqrt{50}+\sqrt{26}+1\)
Ta thấy: \(\sqrt{50}>\sqrt{49}=7,\sqrt{26}>\sqrt{25}=5\)
\(\Rightarrow A>\sqrt{49}+\sqrt{25}+1=7+5+1=13\left(1\right)\)
Ta thấy: \(\sqrt{168}< \sqrt{169}=13\left(2\right)\)
Từ (1) và (2) => \(\sqrt{50}+\sqrt{26}+1>13>\sqrt{168}\Rightarrow\sqrt{50}+\sqrt{26}+1>\sqrt{168}\)
\(\sqrt{50}>\sqrt{49}=7\)
\(\sqrt{26}>\sqrt{25}=5\)
\(\sqrt{1}=1\)
cộng vào \(VT>VP=13>\sqrt{169}>\sqrt{168}\)
a, ta có:
\(\sqrt{24}=4,89\\ \sqrt{3}=1,73\)
\(\Rightarrow\sqrt{24}+\sqrt{3}=4,89+1,73=6,62\)
vì 7>6,62 nên 7>\(\sqrt{24}+\sqrt{3}\)
ta có:
\(\left(\sqrt{50+2}\right)^2=52\)
\(\left(\sqrt{50}+\sqrt{2}\right)^2=50+2+2\sqrt{50}\sqrt{2}\)
\(52+2\sqrt{100}=72\)
suy ra: \(\sqrt{50+2}<\sqrt{50}+\sqrt{2}\)