Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
a) \(2\sqrt{3}=\sqrt{4}.\sqrt{3}=\sqrt{12}< \sqrt{18}=\sqrt{9}.\sqrt{2}=3\sqrt{2}\)
b) \(6\sqrt{5}=\sqrt{36}.\sqrt{5}=\sqrt{36.5}=\sqrt{180}>\sqrt{150}=\sqrt{25}.\sqrt{6}=5\sqrt{6}\)
a) 2√3=√4.√3=√12<√18=√9.√2=3√2
b) 6√5=√36.√5=√36.5=√180>√150=√25.√6=5√6
a)A= \(\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)=\(\sqrt{6+2\sqrt{3}+2}\)
=> A2=8+2\(\sqrt{3}\)
B=\(\sqrt{3}+1\)=> B2=10+2\(\sqrt{3}\)
=>A>B
a) 5 và 3√123:
Ta có 5 = 3√125; vì 125 > 123 ⇒ 3√125 > 3√123.Vậy 5 > 3√123
b) Ta có:
53\(\sqrt{ }\)6 = 3\(\sqrt{ }\)53.6 = 3\(\sqrt{ }\)125.6 = 3\(\sqrt{ }\)750
63\(\sqrt{ }\)5 = 3\(\sqrt{ }\)63.5 = 3\(\sqrt{ }\)216.5 = 3\(\sqrt{ }\)1080
Vì 750 < 1080 \(\Rightarrow\)3\(\sqrt{ }\)750 < 3\(\sqrt{ }\)1080 . Vậy 53\(\sqrt{ }\)6 < 63\(\sqrt{ }\)5.
a) \(\sqrt[3]{123}\) và \(5\)
Ta có : \(5^3=125\)
\(\left(\sqrt[3]{123}\right)^3=123\)
Vì \(125>123\)
\(\implies\) \(\sqrt[3]{125}>\sqrt[3]{123}\)
\(\iff\) \(5>\sqrt[3]{123}\)
Vậy \(5>\sqrt[3]{123}\)
b) \(5\sqrt[3]{6}\) và \(6\sqrt[3]{5}\)
Ta có : \(\left(5\sqrt[3]{6}\right)^3=5^3.\left(\sqrt[3]{6}\right)^3=125.6=750\)
\(\left(6\sqrt[3]{5}\right)=6^3.\left(\sqrt[3]{5}\right)^3=216.5=1080\)
Vì \(750< 1080\)
\(\implies\)\(\sqrt[3]{750}< \sqrt[3]{1080}\)
\(\iff\) \(5\sqrt[3]{6}< 6\sqrt[3]{5}\)
Vậy \(5\sqrt[3]{6}< 6\sqrt[3]{5}\)
a) Ta có:
\(6\sqrt{5}=\sqrt{5\cdot36}=\sqrt{180}\)
\(5\sqrt{6}=\sqrt{6\cdot25}=\sqrt{200}\)
Mà \(\sqrt{180}< \sqrt{200}\)
Vậy: \(6\sqrt{5}< 5\sqrt{6}\)
x) Ta có: \(\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\)
Công hai vế của BĐT cho 3:
Suy ra: \(\sqrt{8}+3< 3+3=6\)
Vậy: \(\sqrt{8}+3< 6\)
b) Ta có:
\(\sqrt{2\sqrt{3}}=\sqrt[4]{12}\)
Tương tự: \(\sqrt{3\sqrt{2}}=\sqrt[4]{18}\)
Mà \(\sqrt[4]{18}>\sqrt[4]{12}\)
Vậy.....
d) Ta có:
\(2\sqrt{5}-5=\sqrt{5}+\sqrt{5}-5=\left(\sqrt{5}-2\right)+\left(\sqrt{5}-3\right)>\sqrt{5}-3\)
Vậy ......
e) Ta có:
\(\sqrt{2}-2=\frac{3\sqrt{2}-6}{3}\)
\(\sqrt{3}-3=\frac{2\sqrt{3}-6}{2}\)
Mà \(3\sqrt{2}>2\sqrt{3}\)
Vậy .....
f) ........... Đang thinking
1) \(2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\)
\(\Rightarrow\)\(6+2\sqrt{2}< 6+3=9\)
2) \(4\sqrt{5}=\sqrt{80}>\sqrt{49}=7\)
\(\Rightarrow\)\(9+4\sqrt{5}>9+7=16\)
3) \(2=\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\)\(2-1>\sqrt{3}-1\)
hay \(1>\sqrt{3}-1\)
4) \(9-4\sqrt{5}< 16\)
5) \(\sqrt{2}>\sqrt{1}=1\)
\(\Rightarrow\)\(\sqrt{2}+1>2\)
\(a,x=\sqrt{27}-\sqrt{2}\)\(=3\sqrt{3}-\sqrt{2}>3\sqrt{3}-\sqrt{3}=2\sqrt{3}\)
Mà: \(y=\sqrt{3}< 2\sqrt{3}\)
\(\Rightarrow x>y\)
\(b,x=\sqrt{5\sqrt{6}}\Rightarrow x^4=5^2.6=150\)
\(y=\sqrt{6\sqrt{5}}\Rightarrow y^4=6^2.5=180\)
\(\Rightarrow x^4< y^4\Rightarrow x< y\left(x,y>0\right)\)
\(c,x=2m;y=m+2\)
Ta có: \(x-y=2m-\left(m+2\right)=m-2\)
Ta xét các trường hợp:
- Nếu \(m< 2\Rightarrow m-2< 0\Rightarrow x< y\)
- Nếu \(m=2\Rightarrow m-2=0\Rightarrow x=y\)
- Nếu \(m>2\Rightarrow m-2=0\Rightarrow x>y\)
\(1)\) Ta có :
\(\left(\sqrt{3\sqrt{2}}\right)^4=\left[\left(\sqrt{3\sqrt{2}}\right)^2\right]^2=\left(3\sqrt{2}\right)^2=9.2=18\)
\(\left(\sqrt{2\sqrt{3}}\right)^4=\left[\left(\sqrt{2\sqrt{3}}\right)^2\right]^2=\left(2\sqrt{3}\right)^2=4.3=12\)
Vì \(18>12\) nên \(\left(\sqrt{3\sqrt{2}}\right)^4>\left(\sqrt{2\sqrt{3}}\right)^4\)
\(\Rightarrow\)\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Chúc bạn học tốt ~