Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{8}+3< \sqrt{9}+3=3+3=6< 6+\sqrt{2}\)
b)\(14=\sqrt{196}>\sqrt{195}=\sqrt{13.15}=\sqrt{13}.\sqrt{15}\)
c) Ta có: \(\hept{\begin{cases}\sqrt{27}>\sqrt{25}=5\\\sqrt{6}>\sqrt{4}=2\end{cases}\Rightarrow\sqrt{27}+\sqrt{6}+1>5+2+1=8}\)
Mà \(\sqrt{48}< \sqrt{49}=7< 8\)
\(\Rightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
Tham khảo nhé~
a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)
ta có \(\sqrt{5}>\sqrt{3}\)và\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)
a)A= \(\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)=\(\sqrt{6+2\sqrt{3}+2}\)
=> A2=8+2\(\sqrt{3}\)
B=\(\sqrt{3}+1\)=> B2=10+2\(\sqrt{3}\)
=>A>B
\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{5-\left(\sqrt{12}+1\right)}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
a) Có 7 = 3 + 4 = \(\sqrt{9}+\sqrt{16}\)
mà 7 < 9 => \(\sqrt{7}< \sqrt{9}\)
15 < 16 => \(\sqrt{15}< \sqrt{16}\)
=> \(\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)
=> \(\sqrt{7}+\sqrt{15}< 7\)
Vậy \(\sqrt{7}+\sqrt{15}< 7\)
b) Có 21 > 20
=> \(\sqrt{21}>\sqrt{20}\)
=> \(\sqrt{21}-\sqrt{6}>\sqrt{20}-\sqrt{6}\) (1)
Lại có 5 < 6
=> \(\sqrt{5}< \sqrt{6}\)
=> \(-\sqrt{5}>-\sqrt{6}\)
=> \(\sqrt{21}-\sqrt{5}>\sqrt{21}-\sqrt{6}\) (2)
Từ (1) và (2) => \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
Vậy \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
c) Có 27 > 25 => \(\sqrt{27}>\sqrt{25}\)
6 > 4 => \(\sqrt{6}>\sqrt{4}\)
=> \(\sqrt{27}+\sqrt{6}\) > \(\sqrt{25}+\sqrt{4}\)
=> \(\sqrt{27}+\sqrt{6}\) > 5 + 2
= >\(\sqrt{27}+\sqrt{6}+1>5+2+1\)
=> \(\sqrt{27}+\sqrt{6}+1>8\)
=> \(\sqrt{27}+\sqrt{6}+1>7\) (vì 8 > 7) (1)
Lại có 49 > 48
=> \(\sqrt{49}>\sqrt{48}\)
=> 7 > \(\sqrt{48}\) (2)
Từ (1) và (2) => \(\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
Vậy \(\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
a) ta có \(\sqrt{27}>\sqrt{25}=5\)
\(\sqrt{6}>\sqrt{4}=2\)
Suy ra \(\sqrt{27}+\sqrt{6}+1>5+2+1=8\)
Ta có 64>48\(\Rightarrow\sqrt{64}>\sqrt{48}\Rightarrow8>\sqrt{48}\)
Vậy \(\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
b) Ta có \(\sqrt{15}.\sqrt{17}=\sqrt{255}\)
Ta lại có 324>255\(\Rightarrow\sqrt{324}>\sqrt{255}\Rightarrow18>\sqrt{255}\)
Vậy \(18>\sqrt{15}.\sqrt{17}\)
Câu b : Ta có : \(\sqrt{13}.\sqrt{15}=\sqrt{\left(14-1\right)}.\sqrt{\left(14+1\right)}=\sqrt{14}^2-1=14-1< 14\)
a: \(\left(\sqrt{18}+3\right)^2=27+18\sqrt{2}\)
\(\left(6+\sqrt{2}\right)^2=38+12\sqrt{2}\)
mà \(27+18\sqrt{2}< 38+12\sqrt{2}\)
nên \(3+\sqrt{18}< 6+\sqrt{2}\)
b: \(14=\sqrt{196}>\sqrt{195}=\sqrt{13\cdot15}\)
ta có: \(\sqrt{27}+\sqrt{6}+1=3\sqrt{3}+\sqrt{6}+1\)(1))
\(\sqrt{48}=4\sqrt{3}=3\sqrt{3}+\sqrt{3}\)(2)
ta lại có: \(\sqrt{6}>\sqrt{3}\Rightarrow\sqrt{6}+1>\sqrt{3}\) (3)
từ (1)(2)và(3)\(\Rightarrow3\sqrt{3}+\sqrt{6}+1>3\sqrt{3}+\sqrt{3}\)
\(\Leftrightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)