Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\frac{1}{\sqrt{13}}>\frac{1}{\sqrt{14}}\Rightarrow\frac{1}{\sqrt{13}}-1< \frac{1}{\sqrt{14}}+1\)
Mà \(\sqrt{225}< \sqrt{289}\)
\(\Rightarrow\sqrt{225}-\left(\frac{1}{\sqrt{13}}-1\right)< \sqrt{289}-\left(\frac{1}{\sqrt{14}}+1\right)\)
Vậy....................
\(x=\left(1-\dfrac{1}{\sqrt{4}}\right).\left(1-\dfrac{1}{\sqrt{16}}\right).\left(1-\dfrac{1}{\sqrt{36}}\right).\left(1-\dfrac{1}{\sqrt{64}}\right).\left(1-\dfrac{1}{\sqrt{100}}\right)\)
\(x=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{4}\right).\left(1-\dfrac{1}{6}\right).\left(1-\dfrac{1}{8}\right).\left(1-\dfrac{1}{10}\right)\)
\(x=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.\dfrac{7}{8}.\dfrac{9}{10}\)
\(x=\dfrac{63}{256}\)
và \(y=\sqrt{20+0,25}\)
\(y=\sqrt{20,25}\)
\(y=4,5\)
Do 4,5 > \(\dfrac{63}{256}\)
=> x<y
a: \(=0.5\cdot10-\dfrac{1}{7}+15=20-\dfrac{1}{7}=\dfrac{139}{7}\)
b: \(=6\cdot\dfrac{-2}{3}+12\cdot\dfrac{4}{9}+18\cdot\dfrac{-8}{27}\)
\(=-4+\dfrac{16}{3}-\dfrac{16}{3}=-4\)
c: \(=\left(\dfrac{5}{2}+\dfrac{3}{8}-\dfrac{5}{8}+\dfrac{2}{3}\right):\left(\dfrac{17}{2}+\dfrac{49}{4}-\dfrac{17}{8}+\dfrac{34}{15}\right)\)
\(=\dfrac{35}{12}:\dfrac{2507}{120}=\dfrac{350}{2507}\)
Bài 1:
a: \(\Leftrightarrow2-3\sqrt{x}+5\sqrt{x}=8\)
=>2 căn x=6
=>căn x=3
=>x=9
b: \(\Leftrightarrow\dfrac{1}{\sqrt{x}}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{2}{3}:\dfrac{2}{3}=1\)
=>x=1
a: \(=\left(\dfrac{1}{4}+\dfrac{3}{4}\right)\cdot\dfrac{18}{5}-\dfrac{6}{5}:\dfrac{-9}{5}+4\)
\(=\dfrac{18}{5}-\dfrac{6}{5}\cdot\dfrac{-5}{9}+4\)
\(=\dfrac{18}{5}+\dfrac{2}{3}+4\)
\(=\dfrac{124}{15}\)
b: \(=\dfrac{9}{25}\cdot\left(\dfrac{3}{5}-\dfrac{1}{5}+\dfrac{1}{2}\right)-\dfrac{3}{8}:\dfrac{9}{8}\)
\(=\dfrac{9}{25}\cdot\dfrac{4}{10}-\dfrac{1}{3}\)
\(=-\dfrac{71}{375}\)
c: \(=\dfrac{7}{10}:\dfrac{4}{5}+\dfrac{2}{9}:\dfrac{5}{9}+\dfrac{1}{8}\)
\(=\dfrac{7}{10}\cdot\dfrac{5}{4}+\dfrac{2}{5}+\dfrac{1}{8}\)
=1+2/5
=7/5
d: \(=\dfrac{3}{7}\left(19+\dfrac{1}{3}-33-\dfrac{1}{3}\right)-\dfrac{2}{7}=\dfrac{3}{7}\cdot\left(-14\right)-\dfrac{2}{7}=-6-\dfrac{2}{7}=\dfrac{-44}{7}\)
e: \(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{-2^{11}\cdot3^{11}-2^{12}\cdot3^{12}}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{-2^{11}\cdot3^{11}\left(1+2\cdot3\right)}=-\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot7}=\dfrac{-4}{7}\)
Ta có : \(\sqrt{961}< \sqrt{1089}\)
\(\left(\dfrac{1}{\sqrt{6}}-1\right)< \left(\dfrac{1}{\sqrt{7}}+1\right)\)
=> x<y
Goodluck
Ta có:
+) \(\sqrt{961}-\left(\dfrac{1}{\sqrt{6}}-1\right)\)
\(=31-\dfrac{1}{\sqrt{6}}+1\)
\(=32-\dfrac{1}{\sqrt{6}}\)
+)\(\sqrt{1089}-\left(\dfrac{1}{\sqrt{7}}+1\right)\)
\(=33-\dfrac{1}{\sqrt{7}}-1\)
\(=32-\dfrac{1}{\sqrt{7}}\)
* Ta lại có:
\(\sqrt{6}< \sqrt{7}\)
\(\Rightarrow\dfrac{1}{\sqrt{6}}>\dfrac{1}{\sqrt{7}}\)
\(\Rightarrow32-\dfrac{1}{\sqrt{6}}< 32-\dfrac{1}{\sqrt{7}}\) hay \(\sqrt{961}-\left(\dfrac{1}{\sqrt{6}}-1\right)< \text{}\text{}\) \(\sqrt{1089}-\left(\dfrac{1}{\sqrt{7}}+1\right)\)
Vậy \(\sqrt{961}-\left(\dfrac{1}{\sqrt{6}}-1\right)< \text{}\text{}\) \(\sqrt{1089}-\left(\dfrac{1}{\sqrt{7}}+1\right)\)
Bài này tớ giải bừa thoi, tớ đọc lại cũng thấy khó hiểu nữa mà
Ta có :
\(\sqrt{225}-\left(\dfrac{1}{\sqrt{13}}-1\right)=15-\dfrac{1}{\sqrt{13}}+1=16-\dfrac{1}{\sqrt{13}}\)
\(\sqrt{289}-\left(\dfrac{1}{\sqrt{14}}+1\right)=17-\dfrac{1}{\sqrt{14}}-1=16-\dfrac{1}{\sqrt{14}}\)
Vì 13 < 14 \(\Rightarrow\sqrt{13}< \sqrt{14}\)
\(\Rightarrow\dfrac{1}{\sqrt{13}}>\dfrac{1}{\sqrt{14}}\)
\(\Rightarrow16-\dfrac{1}{\sqrt{13}}< 16-\dfrac{1}{\sqrt{14}}\)
\(\Rightarrow\sqrt{225}-\left(\dfrac{1}{\sqrt{13}}-1\right)< \sqrt{289}-\left(\dfrac{1}{\sqrt{14}}+1\right)\)
Ta có: \(\sqrt{225}-\left(\dfrac{1}{\sqrt{13}}-1\right)\)
\(=15-\dfrac{1}{\sqrt{13}}+1\)
\(=\left(15+1\right)-\dfrac{1}{\sqrt{13}}\)
\(=16-\dfrac{1}{\sqrt{13}}\)
Và: \(\sqrt{289}-\left(\dfrac{1}{\sqrt{14}}+1\right)\)
\(=17-\dfrac{1}{\sqrt{14}}-1\)
\(=\left(17-1\right)-\dfrac{1}{\sqrt{14}}\)
\(=16-\dfrac{1}{\sqrt{14}}\)
Vì \(13< 14\Rightarrow\sqrt{13}< \sqrt{14}\Rightarrow\dfrac{1}{\sqrt{13}}>\dfrac{1}{\sqrt{14}}\Rightarrow-\dfrac{1}{\sqrt{13}}< -\dfrac{1}{\sqrt{14}}\Rightarrow16-\dfrac{1}{\sqrt{13}}< 16-\dfrac{1}{\sqrt{14}}\)
Hay \(\sqrt{225}-\left(\dfrac{1}{\sqrt{13}}-1\right)< \sqrt{289}-\left(\dfrac{1}{\sqrt{14}}+1\right)\)
Chúc bn học tốt