Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)
\(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)
\(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)
Vậy x < y
\(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)
\(=2.2018+2\sqrt{2018^2-1}< 2.2018+2.2018=4.2018\)
Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2< 4.2018\)
\(\Rightarrow\sqrt{2017}+\sqrt{2018}< 2.\sqrt{2018}\)
Tham khảo nhé~
\(\frac{1}{\sqrt{k\left(2018-k+1\right)}}>\frac{2}{k+2019-k}=\frac{2}{2019}\)
Ap dụng bài toan được
\(A>\frac{2}{2019}+\frac{2}{2019}+...+\frac{2}{2019}=2.\frac{2018}{2019}\)
Giả sử \(\sqrt{2009}\ge2\sqrt{2008}-\sqrt{2007}\)
\(\Leftrightarrow\sqrt{2009}-\sqrt{2008}\ge\sqrt{2008}-\sqrt{2007}\)
\(\Leftrightarrow\frac{1}{\sqrt{2009}+\sqrt{2008}}\ge\frac{1}{\sqrt{2008}+\sqrt{2007}}\) (sai)
Vậy \(\sqrt{2009}< 2\sqrt{2008}-\sqrt{2007}\)
Bài 1:
\(A=\dfrac{2}{\sqrt{2017}+\sqrt{2015}}\)
\(B=\dfrac{2}{\sqrt{2019}+\sqrt{2017}}\)
mà \(\sqrt{2015}< \sqrt{2019}\)
nên A>B
Đặt \(A=\left(\sqrt{2018}+\sqrt{2020}\right)\)
\(\Rightarrow A^2=2018+2\sqrt{2018.2020}+2020=4038+\sqrt{4.2018.2020}=4038+\sqrt{4.\left(2019^2-1\right)}\)
Đặt \(B=2\sqrt{2019}=\sqrt{4.2019}\)
\(B^2=4.2019=2.2019+2.2019=4038+\sqrt{4.2019^2}\)
=> \(\sqrt{4.2019^2}>\sqrt{4.\left(2019^2-1\right)}\)
\(\Rightarrow A>B\Leftrightarrow\sqrt{2018}+\sqrt{2020}>2\sqrt{2019}\)
1,Ta có : \(\sqrt{11}-\sqrt{10}=\frac{11-10}{\sqrt{11}+\sqrt{10}}=\frac{1}{\sqrt{11}+\sqrt{10}}\)
\(\sqrt{6}-\sqrt{5}=\frac{6-5}{\sqrt{6}-\sqrt{5}}=\frac{1}{\sqrt{6}-\sqrt{5}}\)
Dễ thấy : \(11+10>6+5\Rightarrow\sqrt{11}+\sqrt{10}>\sqrt{6}+\sqrt{5}\)
từ đó suy ra : \(\frac{1}{\sqrt{11}+\sqrt{10}}< \frac{1}{\sqrt{6}+\sqrt{5}}\)( theo so sánh phân số có cùng tử )
Vậy...
2,\(\sqrt{2019}+\sqrt{2021}và2\sqrt{2020}\)
Giả sử : \(\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)
\(\Leftrightarrow\left(\sqrt{2019}+\sqrt{2021}\right)^2< \left(2\sqrt{2020}\right)^2\) ( bình phương 2 vế )
\(\Leftrightarrow2019+2021+2\sqrt{2019.2021}< 4.2020\)
\(\Leftrightarrow4040+2\sqrt{2020^2-1^2}< 8080\)
\(\Leftrightarrow\)\(4040+\left(-4040\right)+2\left|2020-1\right|< 8080+\left(-4040\right)\)
( cộng cả hai vế với -4040)
\(\Leftrightarrow2.2019< 4040\)
\(\Leftrightarrow\frac{1}{2}.2.2019< 4040.\frac{1}{2}\)( nhân hai vế với 1/2)
\(\Leftrightarrow2019< 2020\) ( luôn đúng )
=> điều giả sử đúng
Vậy....
4,Ta có : \(\sqrt{2020}-\sqrt{2019}=\frac{2020-2019}{\sqrt{2020}+\sqrt{2019}}=\frac{1}{\sqrt{2020}+\sqrt{2019}}\)
\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)
dễ thấy \(2020+2019>2019+2018\Rightarrow\sqrt{2020}+\sqrt{2019}>\sqrt{2019}+\sqrt{2018}\) Từ đó suy ra : \(\frac{1}{\sqrt{2020}+\sqrt{2019}}< \frac{1}{\sqrt{2020}-\sqrt{2019}}\)
theo ss phân số có cùng tử
Vậy....
phần 5 làm tương tự như phần 4 nhé
theo em là A=B
em mới học lớp 5 thôi chưa chắc đúng đâu
2017=2017
2018 hơn 2016 là 2 đơn vị
2017 lớn hơn 2016 là 1 đơn vị
2017 lớn hơn 2016 1 đơn vị
A hơn B số đăn vị là:
2-(1+1)=0
Nên A=B
thanks em nha anh sẽ xem lại
Ai có kết quả nữa thì giúp mình nha
\(\sqrt{2017}< \sqrt{2018}< \sqrt{2019}\)
Vì \(2017< 2018< 2019\) nên \(\sqrt{2017}< \sqrt{2108}< \sqrt{2019}\)