\(\sqrt{16}+\sqrt{4}+\sqrt{10}+\sqrt{10^2}\)với\(\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

  1/√1 > 1/√100 = 1/10 
1/√2 > 1/√100 = 1/10 
.............................. 
1/√99 > 1/√100 = 1/10 
Cộng vế với vế của 99 bất đẳng thức trên ta đc: 
1/√1 + 1/√2 + ... + 1/√99 > 99.1/10 = 99/10 
=> A = 1/√1 + 1/√2 + ... + 1/√99 + 1/√100 > 99/10 + 1/10 = 100/10 = 10

29 tháng 12 2017

1.

a. \(0,5\sqrt{100}-\sqrt{\dfrac{4}{25}}=5-\dfrac{2}{5}=\dfrac{23}{5}>1\)

\(\dfrac{\left(\sqrt{1\dfrac{1}{9}}-\sqrt{\dfrac{9}{16}}\right)}{5}=\dfrac{\dfrac{\sqrt{10}}{3}-\dfrac{3}{4}}{5}=\dfrac{-9+4\sqrt{10}}{60}\approx0,06< 1\)

\(\Rightarrow0,5\sqrt{100}-\sqrt{\dfrac{4}{25}}>\dfrac{\left(\sqrt{1\dfrac{1}{9}}-\sqrt{\dfrac{9}{16}}\right)}{5}\)

2.

Ta có:

\(\left(\sqrt{a+b}\right)^2=a+b\)

\(\left(\sqrt{a}+\sqrt{b}\right)=\left(\sqrt{a}\right)^2+2\sqrt{ab}+\left(\sqrt{b}\right)^2=a+2\sqrt{ab}+b\)

=> \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)

1b.

Áp dụng công thức trên

=> \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)

29 tháng 12 2017

2.

\(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\\ \Rightarrow a+b< a+2\sqrt{ab}+b\\ \Rightarrow2\sqrt{ab}>0\\ \Rightarrow\sqrt{ab}>0\)

Luôn đúng với mọi a;b dươn g

=> đpcm

30 tháng 10 2017

1.

0,2 . \(\sqrt{100}\) - \(\sqrt{\dfrac{16}{25}}\)

= 0,2 . 10 - \(\dfrac{4}{5}\)

= 2 - \(\dfrac{4}{5}\)

= \(\dfrac{6}{5}\)

30 tháng 10 2017

1/ \(0,2.\sqrt{100}-\sqrt{\dfrac{16}{25}}\)

\(=0,2.10-0,8\)

\(=2-0,8=1,2\)

2/ \(\dfrac{2^7.9^3}{6^5.8^2}\)

\(=\dfrac{93312}{497664}=\dfrac{3}{16}=0,1875\)

3/ \(\sqrt{0,01}-\sqrt{0,25}\)

\(=0,1-0,5\)

\(=-0,4\)

4/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{4}}\)

\(=0,5.10-0,5\)

\(=5-0,5=4,5\)

5/ \(7.\sqrt{0,01}+2.\sqrt{0,25}\)

\(=7.0,1+2.0,5\)

\(=0,7+1=1,7\)

6/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{25}}\)

\(=0,5.10-0,2\)

\(=5-0,2=4,8\)

25 tháng 10 2019

tờ phắc??? toán lớp 7???

21 tháng 9 2017

a)\(\sqrt{1}\)+\(\sqrt{9}\)+\(\sqrt{25}\)+\(\sqrt{49}\)+\(\sqrt{81}\)

=1+3+5+7+9

=25

b)=\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{4}\)

=\(\dfrac{6}{12}\)+\(\dfrac{4}{12}\)+\(\dfrac{2}{12}\)+\(\dfrac{3}{12}\)

=\(\dfrac{15}{12}\)

c) =0,2+0.3+0,4

= 0.9

d) =9-8+7

=8

j) =1,2-1,3+1.4

= (-0,1)+1,4

=1,4

g) \(\dfrac{2}{5}\)+\(\dfrac{5}{2}\)+\(\dfrac{9}{10}\)+\(\dfrac{3}{4}\)

= (\(\dfrac{4}{10}\)+\(\dfrac{15}{10}\)+\(\dfrac{9}{10}\))+\(\dfrac{3}{4}\)

= \(\dfrac{14}{5}\)+\(\dfrac{3}{4}\)

=\(\dfrac{56}{20}\)+\(\dfrac{15}{20}\)

= \(\dfrac{71}{20}\)

Nhớ tick cho mk nha~

5 tháng 1 2017

\(M< 10\)nha bạn

Chúc các bạn 

Học giỏi nha

M<10 dung do minh vua lam xong

13 tháng 2 2018

a) Ta có \(\sqrt{17}\)>\(\sqrt{16}\)

             \(\sqrt{26}\)>\(\sqrt{25}\)

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{16}\)+\(\sqrt{25}\)+1

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1> 4+ 5 +1

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1 >10 hay >\(\sqrt{100}\)

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{99}\)

b) \(\frac{1}{\sqrt{1}}\)=1 >\(\frac{1}{10}\)

    \(\frac{1}{\sqrt{2}}\)>\(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)

....................................

   \(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)

=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)>\(\frac{1}{10}\)+\(\frac{1}{10}\)+...+\(\frac{1}{10}\)(có 100 số \(\frac{1}{10}\))

=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)\(\frac{100}{10}\)=10 

3 tháng 4 2018

\(a)\) Ta có : 

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)

Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

Chúc bạn học tốt ~