\(\sqrt{144}\) và \(\sqrt{37}\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2021

Dễ mà:vvv

Ta có: \(\left\{{}\begin{matrix}\sqrt{37}>\sqrt{36}=6\\\sqrt{26}>\sqrt{25}=5\end{matrix}\right.\)

=> \(\sqrt{37}+\sqrt{26}+1>\sqrt{36}+\sqrt{25}+1=6+5+1=12\)

Mà \(\sqrt{144}=12\)

=> \(\sqrt{37}+\sqrt{26}+1>\sqrt{144}\)

Ta có: \(\sqrt{37}>\sqrt{36}=6\)

\(\sqrt{26}>\sqrt{25}=5\)

Do đó: \(\sqrt{37}+\sqrt{26}>6+5=11\)

\(\Leftrightarrow\sqrt{37}+\sqrt{26}+1>12\)

hay \(\sqrt{144}< \sqrt{37}+\sqrt{26}+1\)

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)

24 tháng 2 2018

Dễ mà

ta có: \(\sqrt{17}>\sqrt{16}=4\)

Tương tự: \(\sqrt{26}>\sqrt{25}=5\)

Suy ra: \(\sqrt{17}+\sqrt{26}+1>4+5+1=10\)

Mặt khác:

\(\sqrt{99}< \sqrt{100}=10\)

Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

13 tháng 2 2018

a) Ta có \(\sqrt{17}\)>\(\sqrt{16}\)

             \(\sqrt{26}\)>\(\sqrt{25}\)

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{16}\)+\(\sqrt{25}\)+1

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1> 4+ 5 +1

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1 >10 hay >\(\sqrt{100}\)

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{99}\)

b) \(\frac{1}{\sqrt{1}}\)=1 >\(\frac{1}{10}\)

    \(\frac{1}{\sqrt{2}}\)>\(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)

....................................

   \(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)

=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)>\(\frac{1}{10}\)+\(\frac{1}{10}\)+...+\(\frac{1}{10}\)(có 100 số \(\frac{1}{10}\))

=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)\(\frac{100}{10}\)=10 

3 tháng 4 2018

\(a)\) Ta có : 

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)

Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

Chúc bạn học tốt ~ 

8 tháng 11 2016

a ) \(\sqrt{37}\)\(6\)

Ta có : \(6=\sqrt{36}\)

\(\sqrt{36}< \sqrt{37}\)

\(\Rightarrow\sqrt{37}>6\)

b ) \(2\sqrt{3}\)\(3\sqrt{2}\)

Ta có : \(2\sqrt{3}=\sqrt{12}\)

\(3\sqrt{2}=\sqrt{18}\)

mà : \(\sqrt{12}< \sqrt{18}\)

\(\Rightarrow2\sqrt{3}< 3\sqrt{2}\)

c ) \(\sqrt{63}+\sqrt{35}\)\(14\)

Ta có : \(\sqrt{63}< \sqrt{64}=8\)\(\sqrt{35}< \sqrt{36}=6\)

\(\Rightarrow\sqrt{63}+\sqrt{35}< 8+6=14\)

2 tháng 2 2018

Ta có:

\(\sqrt{99}< \sqrt{100}=10\)

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=10\)

Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

2 tháng 2 2018

ʇɐɥʇ ɥuɐɹ uɐq ɔɐɔ ɐl ƃunp ıɥʇ ʎɐp uǝp ɔonp ɔop uɐq ɔɐɔ ɐl ʇǝıq ɥuıɯ ƃunɥu 'ɔonp ɔop ıoɯ ıɐl ɔonƃu ʎɐox ıɐɥd ɐʌ ɔop oɥʞ ɐl ʇɐɹ ıɥʇ ʎɐu ǝɥʇ ʇǝıʌ ɐl ʇǝıq ɥuıɯ

1 tháng 11 2017

√17 + √26 + 1 và √99 
Ta có: √17 > √16 (1) 
√26 > √25 (2) 
Từ (1) và (2) => √17 + √26 + 1 > √16 + √25 + 1 
=> √17 + √26 + 1 > 4 + 5 + 1 
=> √17 + √26 + 1 > 10 
=> √17 + √26 + 1 > √100 
Do √100 > √99 
=> √17 + √26 + 1 > √99 
 

Ta có 

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}\)(1)

Mà \(\sqrt{99}< \sqrt{100}\)(2)

Từ (1)(2) \(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

P/s tham khảo nha

7 tháng 11 2016

Bài 1:

a) Ta có: \(6=\sqrt{36}< \sqrt{37}\)

Vậy \(6< \sqrt{37}\)

b) Ta có: \(2\sqrt{3}=\sqrt{4}.\sqrt{3}=\sqrt{12}< \sqrt{18}=\sqrt{9}.\sqrt{2}=3\sqrt{2}\)

Vậy \(2\sqrt{3}< 3\sqrt{2}\)

p/s: Bạn có thể lấy số gần mà tính cũng được do mình nghĩ lớp 7 chưa học mà học rồi thì làm cách trên cho nhanh nhé.

c) Ta có: \(\sqrt{63}\approx7,4;\sqrt{35}\approx6\)

\(7,4+6=13,4< 14\Rightarrow\sqrt{63}+\sqrt{35}< 14\)

Câu 2: a) \(\sqrt{x-1}=\frac{1}{2}\Rightarrow\left(\sqrt{x-1}\right)^2=\left(\frac{1}{2}\right)^2\Rightarrow x-1=\frac{1}{4}\Rightarrow x=\frac{5}{4}\)

b) \(\sqrt{\left(x-1\right)^2}=9=\sqrt{81}\Rightarrow\left(x-1\right)^2=81\Rightarrow x-1\in\left\{\pm9\right\}\Rightarrow x\in\left\{10;-8\right\}\)

c) \(2\sqrt{3x-2}=3\Rightarrow\sqrt{3x-2}=\frac{3}{2}=\sqrt{\frac{9}{4}}\Rightarrow3x-2=\frac{9}{4}\Rightarrow x=\frac{17}{12}\)

 

7 tháng 11 2016

bn chờ mk một tí

hà nội k vội dc đâu

23 tháng 6 2018

Em mới học lớp 6 thôi để em thử àm xem nó ra sao:

a)<

b)<

c)<

e)<