Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
Dễ mà
ta có: \(\sqrt{17}>\sqrt{16}=4\)
Tương tự: \(\sqrt{26}>\sqrt{25}=5\)
Suy ra: \(\sqrt{17}+\sqrt{26}+1>4+5+1=10\)
Mặt khác:
\(\sqrt{99}< \sqrt{100}=10\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
a) Ta có \(\sqrt{17}\)>\(\sqrt{16}\)
\(\sqrt{26}\)>\(\sqrt{25}\)
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{16}\)+\(\sqrt{25}\)+1
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1> 4+ 5 +1
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1 >10 hay >\(\sqrt{100}\)
=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{99}\)
b) \(\frac{1}{\sqrt{1}}\)=1 >\(\frac{1}{10}\)
\(\frac{1}{\sqrt{2}}\)>\(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)
....................................
\(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)
=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)>\(\frac{1}{10}\)+\(\frac{1}{10}\)+...+\(\frac{1}{10}\)(có 100 số \(\frac{1}{10}\))
=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)> \(\frac{100}{10}\)=10
\(a)\) Ta có :
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
Chúc bạn học tốt ~
a ) \(\sqrt{37}\) và \(6\)
Ta có : \(6=\sqrt{36}\)
mà \(\sqrt{36}< \sqrt{37}\)
\(\Rightarrow\sqrt{37}>6\)
b ) \(2\sqrt{3}\) và \(3\sqrt{2}\)
Ta có : \(2\sqrt{3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{18}\)
mà : \(\sqrt{12}< \sqrt{18}\)
\(\Rightarrow2\sqrt{3}< 3\sqrt{2}\)
c ) \(\sqrt{63}+\sqrt{35}\) và \(14\)
Ta có : \(\sqrt{63}< \sqrt{64}=8\) và \(\sqrt{35}< \sqrt{36}=6\)
\(\Rightarrow\sqrt{63}+\sqrt{35}< 8+6=14\)
Ta có:
\(\sqrt{99}< \sqrt{100}=10\)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=10\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
√17 + √26 + 1 và √99
Ta có: √17 > √16 (1)
√26 > √25 (2)
Từ (1) và (2) => √17 + √26 + 1 > √16 + √25 + 1
=> √17 + √26 + 1 > 4 + 5 + 1
=> √17 + √26 + 1 > 10
=> √17 + √26 + 1 > √100
Do √100 > √99
=> √17 + √26 + 1 > √99
Ta có
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}\)(1)
Mà \(\sqrt{99}< \sqrt{100}\)(2)
Từ (1)(2) \(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
P/s tham khảo nha
Bài 1:
a) Ta có: \(6=\sqrt{36}< \sqrt{37}\)
Vậy \(6< \sqrt{37}\)
b) Ta có: \(2\sqrt{3}=\sqrt{4}.\sqrt{3}=\sqrt{12}< \sqrt{18}=\sqrt{9}.\sqrt{2}=3\sqrt{2}\)
Vậy \(2\sqrt{3}< 3\sqrt{2}\)
p/s: Bạn có thể lấy số gần mà tính cũng được do mình nghĩ lớp 7 chưa học mà học rồi thì làm cách trên cho nhanh nhé.
c) Ta có: \(\sqrt{63}\approx7,4;\sqrt{35}\approx6\)
Mà \(7,4+6=13,4< 14\Rightarrow\sqrt{63}+\sqrt{35}< 14\)
Câu 2: a) \(\sqrt{x-1}=\frac{1}{2}\Rightarrow\left(\sqrt{x-1}\right)^2=\left(\frac{1}{2}\right)^2\Rightarrow x-1=\frac{1}{4}\Rightarrow x=\frac{5}{4}\)
b) \(\sqrt{\left(x-1\right)^2}=9=\sqrt{81}\Rightarrow\left(x-1\right)^2=81\Rightarrow x-1\in\left\{\pm9\right\}\Rightarrow x\in\left\{10;-8\right\}\)
c) \(2\sqrt{3x-2}=3\Rightarrow\sqrt{3x-2}=\frac{3}{2}=\sqrt{\frac{9}{4}}\Rightarrow3x-2=\frac{9}{4}\Rightarrow x=\frac{17}{12}\)
Dễ mà:vvv
Ta có: \(\left\{{}\begin{matrix}\sqrt{37}>\sqrt{36}=6\\\sqrt{26}>\sqrt{25}=5\end{matrix}\right.\)
=> \(\sqrt{37}+\sqrt{26}+1>\sqrt{36}+\sqrt{25}+1=6+5+1=12\)
Mà \(\sqrt{144}=12\)
=> \(\sqrt{37}+\sqrt{26}+1>\sqrt{144}\)
Ta có: \(\sqrt{37}>\sqrt{36}=6\)
\(\sqrt{26}>\sqrt{25}=5\)
Do đó: \(\sqrt{37}+\sqrt{26}>6+5=11\)
\(\Leftrightarrow\sqrt{37}+\sqrt{26}+1>12\)
hay \(\sqrt{144}< \sqrt{37}+\sqrt{26}+1\)