Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\frac{9}{5}=\frac{-54}{30},\frac{11}{-6}=-\frac{55}{30}\)
\(-\frac{54}{30}>-\frac{55}{30}\Rightarrow-\frac{9}{5}>-\frac{11}{6}\)
\(-\frac{6}{11}=-\frac{30}{55}\)
Ta có bổ đề \(\frac{a}{b}< \frac{a+m}{b+m}\)
=> \(\frac{a}{b}< \frac{a+2}{b+2}\)
Chúc hok tốt
--> \(a^2b^2c^2\)= \(\frac{2}{5}\).\(\frac{3}{7}\).\(\frac{10}{21}\)=\(\frac{4}{49}\)--> \(abc\)=\(\sqrt{\frac{4}{49}}=\frac{2}{7}\)
--> \(c=\frac{2}{7}:\frac{2}{5}=\frac{5}{7}\)-->\(a=\frac{2}{3}\)-->\(b=\frac{3}{5}\)
1
a.=>x-2<0=>x<2
b.=>3x+6<0=>3x<-6=>x<-2
Chúc bạn học tốt ! ^_^
a) 3\(^{21}\) = (3\(^7\))\(^3\) = 2187\(^3\)
2\(^{31}\) < 2\(^{33}\) = (2\(^{11}\))\(3\) = 2048\(^3\)
\(\Rightarrow\) 3\(^{21}\) > 2\(^{33}\)
\(\Rightarrow3^{21}>2^{31}\)
Ta có :
a) \(\frac{2}{5}:8=\frac{2}{5}:\frac{8}{1}=\frac{2}{5}\cdot\frac{1}{8}=\frac{1}{5}\cdot\frac{1}{4}=\frac{1}{20}\)
\(\frac{4}{5}:8=\frac{4}{5}\cdot\frac{1}{8}=\frac{1}{5}\cdot\frac{1}{2}=\frac{1}{10}\)
Mà \(\frac{1}{20}\ne\frac{1}{10}\)nên \(\frac{2}{5}:8\ne\frac{4}{5}:8\)
=> không thể lập được thành tỉ lệ thức
b) \(2\frac{1}{3}=\frac{2\cdot3+1}{3}=\frac{7}{3}\)
\(3\frac{1}{4}:13=\frac{13}{4}:13=\frac{13}{4}\cdot\frac{1}{13}=\frac{1}{4}\)
=> \(\frac{7}{3}\ne\frac{1}{4}\)hoặc \(2\frac{1}{3}\ne3\frac{1}{4}:13\)
=> không lập được tỉ lệ thức
Bạn tham khảo nhé
a ) Ta có :
\(\left(-\frac{1}{5}\right)^{300}=\left(\frac{1}{5}\right)^{300}=\frac{1}{5^{300}}=\frac{1}{\left(5^3\right)^{100}}=\frac{1}{125^{100}}\)
\(\left(-\frac{1}{3}\right)^{500}=\left(\frac{1}{3}\right)^{500}=\frac{1}{3^{500}}=\frac{1}{\left(3^5\right)^{100}}=\frac{1}{243^{100}}\)
Do \(\frac{1}{125^{100}}>\frac{1}{243^{100}}\left(125^{100}< 243^{100}\right)\)
\(\Rightarrow\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{3}\right)^{500}\)
b )
Ta có :
\(2550^{10}=\left(50.51\right)^{10}=50^{10}.51^{10}\)
\(50^{20}=50^{10}.50^{10}\)
Do \(50^{10}.51^{10}>50^{10}.50^{10}\)
\(\Rightarrow50^{20}< 2550^{10}\)
c )
Ta có :
\(2^{100}=\left(2^4\right)^{25}=16^{25}\)
\(3^{75}=\left(3^3\right)^{25}=27^{25}\)
\(5^{50}=\left(5^2\right)^{25}=25^{25}\)
Do \(16^{25}< 25^{25}< 27^{25}\)
\(\Rightarrow2^{100}< 5^{50}< 3^{75}\)