Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hihi bài này mình học ùi nhưng ko hỉu cho a+2016 bạn về xem lại sách y
Vì x tỉ lệ thuận với y theo hệ số tỉ lệ a nên x = y.a (1)
y tỉ lệ thuận với z theo hệ số tỉ lệ b nên y = z.b (2)
z tỉ lệ thuận với t theo hệ số tỉ lệ c nên z = t.c (3)
Từ (1); (2) và (3) => x = t.c.b.a
=> \(t=\frac{x}{c.b.a}=x.\frac{1}{c.b.a}\)
Vậy t tỉ lệ thuận với x và hệ số tỉ lệ là \(\frac{1}{c.b.a}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}\)
\(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)
\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{\left[k.\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\frac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\) (2)
Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)
tính biểu thức A đầu tiien cậu tìm số số hạng nhé : 240-20/1=220 (cậu hiểu 1 là khoảng cách giữa 2 số liền nhau trong dãy) rồi cậu tính (240+20).220/2= thui cậu tự bấm máy nhé mẹ mình cùm mt của mình đi dạy rùi nhớ like nhé bạn tên đẹp
cảm ơnnnnnnnnnnnnnnnnnnnn nhìu đúng là tên đẹp có khác like cái nữa đi
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Theo đề bài ta có x = \(\frac{a}{m}\), y = \(\frac{b}{m}\)(a, b, m ∈ Z, b # 0)
Vì x < y nên ta a < b
Ta có: x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\); z = \(\frac{a+b}{2m}\)
Vì a < b \(\Rightarrow\) a + a < a + b \(\Rightarrow\) 2a < a + b
Vì 2a < a + b nên x < z (1)
Vì a < b \(\Rightarrow\) a + b < b + b \(\Rightarrow\) a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta \(\Rightarrow\) x < z < y
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2b+3d}\left(đpcm\right)\)
Nếu x < y thì \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\) hay \(\frac{a}{b}\) < \(\frac{2m}{2n}\) < \(\frac{c}{d}\) suy ra \(\frac{a}{b}\) < \(\frac{m}{n}\) < \(\frac{c}{d}\) , do đó x < z < y
tương tự nếu x > y thì x > z > y
Có 2 trường hợp như đề đã cho :
+ Nếu cùng dấu :
=> \(\frac{a}{b}\) dương => \(\frac{a}{b}\) > 0
+ Nếu khác dấu
=> \(\frac{-a}{b}\) hay \(\frac{a}{-b}\) ta thấy khác dấu thì tử số hoặc mẫu số âm , mà âm thì bé hơn 0 => \(\frac{a}{b}\) < 0
Khi số hữu tỉ \(\frac{a}{b};\frac{-a}{-b}\)so sánh với 0 thì:
\(\frac{a}{b}>0\) ; \(\frac{-a}{-b}>0\)
Khi số hữu tỉ \(\frac{a}{-b};\frac{-a}{b}\)so sánh với 0 thì :
\(\frac{a}{-b}< 0;\frac{-a}{b}< 0\)
Chúc bạn học tốt ^^