\(\frac{a}{b}\)[ a, b thuộc Z, b khác 0] với 0 khi a,b cùng dấu và khác...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2016

Khi a,b cùng dấu thì:

\(\frac{a}{b}\)hoặc \(-\frac{a}{-b}\)\(>0\)

Khi a,b khác dấu:

a dương b âm

\(\frac{a}{-b}< 0\)

a âm b dương

\(-\frac{a}{b}< 0\)

tíc mình nha

19 tháng 8 2016

1. Với a, b ∈ Z, b> 0

- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0

- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0

Tổng quát: Số hữu tỉ  \(\frac{a}{b}\) (a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0

2. Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y

                                                  

19 tháng 8 2016

ah ! xin lỗi ha, toán lớp 7 đoá !hihi

6 tháng 4 2020

CR:

8-4=4(cm)

TT:

8x4x8=256(cm3)

Đ/S:256cm3

6 tháng 4 2020

Ta có: a-1/a = a/a - 1/a = 1 - 1/a < 1

           b+1/b = b/b + 1/b = 1 + 1/b > 1

      => a-1/a < 1 < b+1/b

   Vậỵ a-1/a < b+1/b

7 tháng 6 2016

Lớp 6 mà có số hữu tỉ

8 tháng 6 2016

giải:

ad - bc = 1 nên ad lớn hơn ac 1 đơn vị

=> bc - ad = -1

so sánh: \(y\)\(t=\frac{a+m}{b+m}\)

ta so sánh: \(\frac{c}{d}\)\(\frac{a+m}{b-m}\)

ta xét hiệu của \(\left[c\left(b-m\right)\right]-\left[d\left(a+m\right)\right]\)

                       \(=\left(bc+cn\right)-\left(ad+md\right)\)

                       \(=bc+cn-ad-md\)

                       \(=\left(bc-ad\right)+\left(cn-md\right)\)

                       \(=-1+0\)

                       \(=-1\)

\(\Rightarrow\)\(c\left(b+n\right)< d\left(a+m\right)\)

\(\Rightarrow\)\(\frac{c}{d}< \frac{a+m}{b+n}\)

vậy \(y< t\)

                        

11 tháng 9 2016

* So sánh \(\frac{a}{b}and\frac{a+c}{b+d}\)

\(\frac{a}{b}=\frac{a.\left(b+d\right)}{b.\left(b+d\right)}\) và \(\frac{a+c}{b+d}=\frac{\left(a+c\right).b}{\left(b+d\right).b}\)

TỪ đây ta so sánh a.(b+d) và  ( a+ c).b 

a.( b+d) = ab+ ad

(a+c). b = ab+ bc 

Nếu \(\frac{a}{b}>\frac{c}{d}\)thì x> z

nếu \(\frac{a}{b}< \frac{c}{d}\)thì x < z

nếu \(\frac{a}{b}=\frac{c}{d}\)thì x = z 

So sánh y và z cũng tương tự!