Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: -33/ 37 = -0,89
-34/35 = -0,97
=> -0,89 > -0,97 => -33/37> -34/35
b) ta có: \(\frac{n+1}{n+2}=\frac{n}{n+2}+\frac{1}{n+2}\)
mà \(\frac{n}{n+2}>\frac{n}{n+3}\Rightarrow\frac{n}{n+2}+\frac{1}{n+2}>\frac{n}{n+3}\)
\(\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
a) ta có: \(\frac{-33}{7}\) = -0,89
\(\frac{-34}{35}\)= -0,97
=> -0,89 > -0,97 => \(\frac{-33}{37}\)> \(\frac{-34}{35}\)
b) ta có: n+1n+2 =nn+2 +1n+2
mà nn+2 >nn+3 ⇒nn+2 +1n+2 >nn+3
⇒n+1n+2 >nn+3
Câu 1 :
\(\dfrac{-25}{37}\&\dfrac{-20}{31}\)
Ta thấy \(\dfrac{-25}{37}< \dfrac{-20}{37}\)
mà \(\dfrac{-20}{37}< \dfrac{-20}{31}\)
\(\Rightarrow\dfrac{-25}{37}< \dfrac{-20}{31}\)
Câu 2 :
\(\dfrac{2}{3}\&\dfrac{5}{7}\)
\(\dfrac{2}{3}:\dfrac{5}{7}=\dfrac{2}{3}.\dfrac{7}{5}=\dfrac{14}{15}< 1\)
\(\Rightarrow\dfrac{5}{7}>\dfrac{2}{3}\) Câu 3 : \(\dfrac{8}{13}\&\dfrac{5}{7}\)Ta thấy \(\dfrac{8}{13}:\dfrac{5}{7}=\dfrac{8}{13}.\dfrac{7}{5}=\dfrac{56}{65}< 1\)
\(\Rightarrow\dfrac{8}{13}< \dfrac{5}{7}\)Ta có:
\(-\dfrac{9}{19}>-\dfrac{10}{19}>-\dfrac{10}{21}\\ \Rightarrow-\dfrac{9}{19}>-\dfrac{10}{21}\)
ĐK: a,b thuộc Q
Ta có: a/b = ab => ab/b^2 = ab => b^2 = 1 => b = 1 hoặc -1
Với b = 1, a + b = a.b => a + 1 = a (vô lí)
Với b = - 1, a + b = ab => a -1 = -a => 2a = 1 => a = 1/2 (thỏa Đk)
Vậy cặp số hữu tỉ cần tìm là 1/2 và -1
P/s: Đăng 1 lần thôi là ng̀ ta bt rồi, mắc chi đăng lắm v?
ĐKXĐ: b khác 0
Xét 2 TH:
với a khác 0 thì ab=a/b=>b=1/b=>b^2=1=>b=1
thay b=1 vào a+b=ab có a+1=a (vô lĩ)
với a bằng 0 thì a+b=a/b=>0+b=0=>b=0 (không thỏa mãn ĐKXĐ)
vậy ko cá các cặp số hữu tỉ a,b thỏa mãn cái đề bài
và
\(\frac{2008}{2009};\frac{20}{19}\)
\(1-\frac{2008}{2009}=\frac{1}{2009}\)
\(1-\frac{20}{19}=\frac{-1}{19}=\frac{1}{19}\)
Vì 19 < 2009 Nên \(\frac{1}{2009}< \frac{1}{19}\)
Vậy \(\frac{2008}{2009}>\frac{20}{19}\)
a/
\(x-y=\frac{a}{b}-\frac{c}{d}=\frac{ad-cb}{bd}=\frac{1}{bd}.\) (1)
\(y-z=\frac{c}{d}-\frac{e}{h}=\frac{ch-de}{dh}=\frac{1}{dh}\)(2)
+ Nếu d>0 => (1)>0 và (2)>0 => x>y; y>x => x>y>z
+ Nếu d<0 => (1)<0 và (2)<0 => x<y; y<z => x<y<z
b/
\(m-y=\frac{a+e}{b+h}-\frac{c}{d}=\frac{ad+de-cb-ch}{d\left(b+h\right)}=\frac{\left(ad-cb\right)-\left(ch-de\right)}{d\left(b+h\right)}=\frac{1-1}{d\left(b+h\right)}=0\)
=> m=y
+
cảm ơn bn nha Nguyễn Ngoc Anh Minh mk k cho bn r đó kb vs mk nha
\(\dfrac{1}{21}\) = \(\dfrac{1\times3}{21\times3}\) = \(\dfrac{3}{63}\) < \(\dfrac{3}{27}\)
Vậy \(\dfrac{1}{21}\) < \(\dfrac{3}{27}\)