\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+............+\frac{1}{45}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

So sánh s với 2 biếts=1+13 +16 +110 +............+145 

14 tháng 8 2016

Như vậy ta sẽ so sánh 1 và 1/3 + 1/6 + 1/10 +......+ 1/45

Ta có :  1/3 + 1/6 + 1/10 + .....+  1/45 <  1/10 + 1/10 + 1/10 +......+  1/10 

Mà 1/10 + 1/10 + 1/10 + ....+  1/10 = 8/10 < 1

     Vậy S <2

23 tháng 4 2017

S=\(\frac{1}{3}.\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{4950}\right)\)

S=\(\frac{1}{3}.2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)

S=\(\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

S=\(\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

23 tháng 4 2017

\(\frac{33}{50}>\frac{30}{50}=\frac{3}{5}->S>\frac{3}{5}\)

17 tháng 2 2018

\(S=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2014}{5^{2014}}\)
\(5S=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2014}{5^{2013}}\)
\(\Rightarrow5S-S=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}\)
\(S=\frac{1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}}{4}\)
Xét \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\)
\(5A-A=1-\frac{1}{5^{2013}}\Leftrightarrow A=\frac{1-\frac{1}{5^{2013}}}{4}=\frac{1}{4}-\frac{1}{4.5^{2013}}\)
\(\Rightarrow S=\frac{1+\frac{1}{4}-\left(\frac{1}{4.5^{2013}}+\frac{2014}{5^{2014}}\right)}{4}=\frac{5}{16}-\frac{\frac{1}{4.5^{2013}}+\frac{2014}{5^{2014}}}{4}< \frac{1}{3}\)

 

14 tháng 4 2017

bé hơn nha bạn

14 tháng 4 2017

Ta có: 1/9 + 1/10 < 1/8+1/8 = 1/4

1/41+1/42< 1/40+1/40=1/20

=> 1/5+1/9+1/10+1/41+1/42<1/5+1/4+1/20=1/2

Vậy 1/5+1/9+1/10+1/41!+1/42<1/2

Bài 1 :

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\left(1\right)\)

\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)

Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)

Bài 2:

\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)

\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)

\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)

\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)

\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)

Chúc bạn học tốt ( -_- )

2 tháng 6 2018

Bài 1:

ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)(1) 

ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)

                                                                               \(=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)

\(\Rightarrow B>1\)(2)

Từ (1);(2) => A<B

14 tháng 5 2018

6S=6-1+1/6-1/6^2+...+1/6^2015-1/6^2016

7S=(6-1+1/6-1/6^2+...+1/6^2015-1/6^2016)+(1-1/6+1/6^2-1/6^3+...+1/6^2016-1/6^2017)

CỘNG VẾ THEO VẾ 

TA ĐƯỢC:

7S=6-1/6^2017

SUY RA 

S=6/7-1/6^2017.7<6/7

SUY RA S<S/7

25 tháng 2 2018

Ta có : 

\(S=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^9}\)

\(\Leftrightarrow\)\(3S=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)

\(\Leftrightarrow\)\(3S-S=\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)-\left(\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^9}\right)\)

\(\Leftrightarrow\)\(2S=\frac{1}{3}-\frac{1}{3^9}\)

\(\Leftrightarrow\)\(2S=\frac{3^8-1}{3^9}\)

\(\Leftrightarrow\)\(S=\frac{3^8-1}{2.3^9}\)

Ở đây mk chỉ ghi \(...\) cho nhanh nếu bạn làm vào vở thì ghi đầy đủ ra nhé 

30 tháng 4 2019

bạn còn on ko

27 tháng 3 2019

\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{1}{4}

1 tháng 8 2019

\(\frac{1}{5}+\frac{1}{9}+\frac{1}{10}+\frac{1}{41}+\frac{1}{42}\)

\(< \frac{1}{5}+\frac{1}{8}+\frac{1}{8}+\frac{1}{40}+\frac{1}{40}\)

\(=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

21 tháng 7 2016

\(S=\frac{1}{1.1.3}+\frac{1}{2.3.5}+\frac{1}{3.5.7}+\frac{1}{4.7.9}+...+\frac{1}{100.199.201}\) 

\(S=\frac{1}{3}+\frac{2}{4.3.5}+\frac{2}{6.5.7}+\frac{2}{8.7.9}+...+\frac{2}{200.199.201}\)  

Ta có: \(\frac{2}{3.4.5}< \frac{2}{3.5}\) 

\(\Rightarrow S< \frac{1}{3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{199.201}\) 

\(\Rightarrow S< \frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{199}-\frac{1}{201}\) 

\(\Rightarrow S< \frac{1}{3}+\frac{1}{3}-\frac{1}{201}\) 

\(\Rightarrow S< \frac{2}{3}-\frac{1}{201}< \frac{2}{3}\)  

\(\Rightarrow S< \frac{2}{3}\) 

Chúc học tốt. 

20 tháng 7 2016

Chắc đề này đúng chứ. Mãi k tìm ra quy luật