Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1\cdot2+2\cdot4+3\cdot6+4\cdot8+5\cdot10}{3\cdot4+6\cdot8+9\cdot12+12\cdot16+15\cdot20}\)
\(=>A=\frac{1\cdot2+4\cdot1\cdot2+9\cdot1\cdot2+16\cdot1\cdot2+25\cdot1\cdot2}{3\cdot4+4\cdot3\cdot4+9\cdot3\cdot4+16\cdot3\cdot4+25\cdot3\cdot4}\)
\(=>A=\frac{\left(1+4+9+16+25\right)\cdot1\cdot2}{\left(1+4+9+16+25\right)\cdot3\cdot4}=\frac{1}{6}=\frac{111111}{666666}\)
Mà \(\frac{111111}{666666}< \frac{111111}{666665}\)
\(=>A< B\)
Bài làm:
Ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left[\left(1+\frac{1}{3}+...+\frac{1}{9}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]-\left[\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)=B\)
Vậy A = B