\(\dfrac{2001}{2002}\)và\(\dfrac{2021}{2003}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2023

Ta có:
\(\dfrac{2001}{2002}< 1\)
\(1< \dfrac{2021}{2003}\)
\(\Rightarrow\dfrac{2001}{2002}< \dfrac{2021}{2003}\)

#Đang Bận Thở

11 tháng 5 2023

a) 2001 : 2002

b) 2021 : 2003

17 tháng 4 2017

So sánh hai biểu thức A và B biết rằng:

[Math Processing Error]A=20002001+20012002

[Math Processing Error]B=2000+20012001+2002

Hướng dẫn làm bài:

Ta có: [Math Processing Error]20002001>20002001+2002 (cùng tử, phân số nào có mẫu lớn hơn thì nhỏ hơn)

[Math Processing Error]20012002>20012001+2002 (cùng tử, phân số nào có mẫu lớn hơn thì nhỏ hơn)

Cộng vế với vế ta được:

[Math Processing Error]20002001+20012002>20002001+2002+20012001+2002

Vậy A > B

24 tháng 5 2016

A=2001/2002+2002/2003

B=2001/2002+2003+2002/2002+2003

(tớ tách B ra đấy)

mà 2001//2002+2002/2003>2001/2002+2003+ 202/2002+2003

A>B

3 tháng 1 2018

\(A=\dfrac{10^{2001}+1}{10^{2002}+1}\Leftrightarrow10A=\dfrac{10^{2002}+10}{10^{2002}+1}=1+\dfrac{9}{10^{2002}+1}\)

\(B=\dfrac{10^{2002}+1}{10^{2003}+1}\Leftrightarrow10B=\dfrac{10^{2003}+10}{10^{2003}+1}=1+\dfrac{9}{10^{2003}+1}\)

Từ đó suy ra \(10A>10B\) hay \(A>B\)

3 tháng 1 2018

Áp dụng bất đẳng thức :\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) ta có :

\(B=\dfrac{10^{2002}+1}{10^{2003}+1}< \dfrac{10^{2002}+1+9}{10^{2003}+1+9}=\dfrac{10^{2002}+10}{10^{2003}+10}=\dfrac{10\left(10^{2001}+1\right)}{10\left(10^{2002}+1\right)}=\dfrac{10^{2001}+1}{20^{2002}+1}=A\)

\(\Leftrightarrow A>B\)

31 tháng 1 2016

2001/2002=1-1/2002

2002/2003=1-1/2003

vi 1/2003<1/2002 nen 2001/2002<2002/2003

31 tháng 1 2016

Ta có: 2003 x 2001 < 2002 x 2002

=> \(\frac{2001}{2002}\)<\(\frac{2002}{2003}\)

11 tháng 5 2016

ta có \(\frac{2000+2002}{2001+2003}\)\(\frac{2000}{2001+2003}\)\(\frac{2002}{2001+2003}\)=\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)

ta có \(\frac{2000}{2001}\)>\(\frac{2000}{4004}\) và \(\frac{2002}{2003}\)\(\frac{2002}{4004}\)

 nên \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)

vậy \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000+2002}{2001+2003}\)

11 tháng 5 2016

\(\frac{2000+2002}{2001+2003}=\frac{2000}{2001+2003}+\frac{2002}{2001+2003}< \frac{2000}{2001}+\frac{2002}{2003}\)

23 tháng 2 2016

Cách 1:\(\frac{2001}{2002}=1-\frac{1}{2002}\)

\(\frac{2002}{2003}=1-\frac{1}{2003}\)

Vì \(\frac{1}{2002}>\frac{1}{2003}\) nên \(\frac{2001}{2002}<\frac{2002}{2003}\)

Cách 2:Ta có:\(\frac{2001}{2002}<1\)

=>\(\frac{2001}{2002}<\frac{2001+1}{2002+1}=\frac{2002}{2003}\)

Vậy \(\frac{2001}{2002}<\frac{2002}{2003}\)

23 tháng 2 2016

Số thứ nhất bé hơn đúng ko bạn?

30 tháng 3 2017

\(A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2002}+\dfrac{2001}{2002}\)

\(=\dfrac{2000+2001}{2002}>\dfrac{2000+2001}{2001+2002}\)

nên \(A>B\)

12 tháng 5 2017

Ta có : \(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)

\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)

\(\Rightarrow\) \(\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000+2001}{2001+2002}\)

Vậy A > B

18 tháng 3 2016

giải giúp tôi đi

18 tháng 5 2017

ta thấy:

\(B< 1\Rightarrow B< \frac{10^{2002}+1+9}{10^{2003}+1+9}=\frac{10^{2002}+10}{10^{2003}+10}=\frac{10\left(10^{2001}+1\right)}{10\left(10^{2002}+1\right)}=\frac{10^{2001}+1}{10^{2002}+1}=A\)

=>B<A

vậy.......

18 tháng 5 2017

Ta có:

\(A=\frac{10^{2001}+1}{10^{2002}+1}\Rightarrow10A=\frac{10\left(10^{2001}+1\right)}{10^{2002}+1}=\frac{10^{2002}+10}{10^{2002}+1}=\frac{10^{2002}+1+9}{10^{2002}+1}=1+\frac{9}{10^{2002}+1}\)

\(B=\frac{10^{2002}+1}{10^{2003}+1}\Rightarrow10B=\frac{10\left(10^{2002}+1\right)}{10^{2003}+1}=\frac{10^{2003}+10}{10^{2003}+1}=\frac{10^{2003}+1+9}{10^{2003}+1}=1+\frac{9}{10^{2003}+1}\)

Vì \(\frac{9}{10^{2002}+1}>\frac{9}{2^{2003}+1}\Rightarrow1+\frac{9}{10^{2002}+1}>1+\frac{9}{2^{2003}+1}\Rightarrow10A>10B\Rightarrow A>B\)

Vậy A > B