\(\dfrac{100^{20}-1}{100^{30}-1}\)

B =

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

1) \(x+\dfrac{30}{100}x=-1,31\)

\(\Leftrightarrow x+\dfrac{3}{10}x=-\dfrac{131}{100}\)

\(\Leftrightarrow100x+30x=-131\)

\(\Leftrightarrow130x=-131\)

\(\Leftrightarrow x=-\dfrac{131}{130}\)

Vậy \(x=-\dfrac{131}{130}\)

b) \(\left(4,5-2x\right)\cdot\left(-1\dfrac{4}{7}\right)=\dfrac{11}{4}\)

\(\Leftrightarrow\left(\dfrac{9}{2}-2x\right)\cdot\left(-\dfrac{4}{7}\right)=\dfrac{11}{4}\)

\(\Leftrightarrow-\dfrac{18}{7}+\dfrac{8}{7}x=\dfrac{11}{4}\)

\(\Leftrightarrow-72+32x=77\)

\(\Leftrightarrow32x=77+72\)

\(\Leftrightarrow32x=149\)

\(\Leftrightarrow x=\dfrac{149}{32}\)

Vậy \(x=\dfrac{149}{32}\)

25 tháng 6 2017

sao k làm hết cho bạn ấy v anh

16 tháng 4 2018

A=1+2+3+4+5+...+99+100

A=\(\dfrac{100.\left(100+1\right)}{2}\)=5050

Vậy A=5050

B=\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)

B=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

B=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

B=\(1-\dfrac{1}{100}\)=\(\dfrac{99}{100}\)

Vậy B=\(\dfrac{99}{100}\)

16 tháng 4 2018

thanghoaChuẩn ồi còn j

9 tháng 3 2018

Có lời giải đàng hoàng nha

12 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\left(n\in N\right)\)

\(B=\dfrac{10^{20}+1}{10^{21}+1}< 1\)

\(B< \dfrac{10^{20}+1+9}{10^{21}+1+9}\Rightarrow B< \dfrac{10^{20}+10}{10^{21}+10}\Rightarrow B< \dfrac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}\Rightarrow B< \dfrac{10^{19}+1}{10^{20}+1}=A\)\(\Rightarrow B< A\)

4 tháng 5 2017

Áp dụng tính chất : \(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) (\(a;b,m\in N\)*)

Ta có :

\(A=\dfrac{100^{2007}+1}{100^{2008}+1}< \dfrac{100^{2007}+1+99}{100^{2008}+1+99}=\dfrac{100^{2007}+100}{100^{2008}+100}=\dfrac{100\left(100^{2006}+1\right)}{100\left(100^{2007}+1\right)}=\dfrac{100^{2006}+1}{100^{2007}+1}=B\)

\(\Rightarrow A< B\)

28 tháng 3 2017

Ta có:

A = \(\dfrac{100^{100}+1}{100^{90}+1}\)> 1 \(\Rightarrow\) A > \(\dfrac{100^{100}+1+99}{100^{90}+1+99}\) = \(\dfrac{100^{100}+100}{100^{90}+100}\)

\(\Rightarrow\) A > \(\dfrac{100\left(100^{99}+1\right)}{100\left(100^{89}+1\right)}\) = B

Vậy A > B

\(100A=\dfrac{100^{2016}+100}{100^{2016}+1}=1+\dfrac{99}{100^{2016}+1}\)

\(100B=\dfrac{100^{2017}+100}{100^{2017}+1}=1+\dfrac{99}{100^{2017}+1}\)

mà \(100^{2016}< 100^{2017}\)

nên A>B

13 tháng 12 2022

Bài 4:

=>(x-5)*3/10=1/5x+5

=>3/10x-3/2=1/5x+5

=>1/10x=5+3/2=6,5

=>0,1x=6,5

=>x=65