\(\frac{n}{2n+1}\) và Q = \(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

\(Q=\frac{3n+1}{6n+2}=\frac{3n+1}{2\left(3n+1\right)}=\frac{1}{2}\)

\(\frac{1}{2}-P=\frac{1}{2}-\frac{n}{2n+1}=\frac{2n+1-2n}{4n+2}=\frac{1}{4n+2}\)

với\(n\ge0\)thì \(\frac{1}{2}-P\ge0\)nên P<Q

     n<0     thì \(\frac{1}{2}-P< 0\)nên P>Q

\(\left(3x-1\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)

\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)

\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)

\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)

27 tháng 12 2018

a, ĐỂ \(\frac{24}{2n+5}\)là số nguyên 

\(\Rightarrow24⋮2n+5\Rightarrow2n+5\inƯ\left(24\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)

2n + 5 = 1 => 2n = -4 => n = -2 

2n + 5 = -1 => n = -3 

... tương tự thay vào nhé ! 

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

4 tháng 8 2015

a)Có\(\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)

Để \(3+\frac{21}{n-4}\)\(\in z\) mà \(3\in z\Rightarrow\frac{21}{n-4}\in z\)

\(\Rightarrow\)n-4 \(\in\)Ư(21)={-1;1;-3;3;-7;7;-21;21}

ta có bảng sau:

n - 4  -1     1    -3     3    -7     7   -21   21 
n   3   5   1   7  -3  11 -17  26

Vậy,n\(\in\){-17;-3;1;3;5;7;11;26} 

b)có:\(\frac{6n+5}{2n-4}=\frac{6n-12+17}{2n-4}=\frac{3\left(2n-4\right)+17}{2n-4}=3+\frac{17}{2n-4}\)

Để \(3+\frac{17}{2n-4}\)\(\in z\) mà \(3\in z\Rightarrow\frac{17}{2n-4}\in z\)

\(\Rightarrow\)2n-4 \(\in\)Ư(17)={-1;1;-17;17}

ta có bảng sau:

 2n-4   -1     1    -17   17  
   n 1,5 2,5 -6,5 10,5

 theo bảng trên không có giá trị n thỏa mãn ĐK n\(\in z\)

Vậy, không có giá trị nguyên n nào để \(\frac{6n+5}{2n-4}\in z\)
 

 

21 tháng 3 2018

Cho biểu thức A=\(\frac{2n-1}{3-n}\)tìm giá trị nguyên của n để A là 1 số nguyên

18 tháng 3 2021

a) Vì n\(\inℕ\)nên n + 1 \(\inℕ\)và 2n + 3\(\inℕ\).

Gọi d \(\in\)ƯCLN ( n + 1 , 2n + 3 )

\(\Rightarrow n+1⋮d\)và \(2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)

\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản .

                           Vậy \(\frac{n+1}{2n+3}\)tối giản \(\forall n\inℕ\).

18 tháng 3 2021

b) TƯƠNG TỰ CÂU (a)

a, \(A=\frac{n+7}{n+2}=\frac{n+2+5}{n+2}=\frac{5}{n+2}\)

\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta lập bảng 

n + 21-15-5
n-1-33-7

b, \(B=\frac{n+5}{n-2}=\frac{n-2+7}{n-2}=\frac{7}{n-2}\)

\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng 

n - 21-17-7
n319-5

c, \(C=\frac{2n+13}{n+1}=\frac{2\left(n+1\right)+11}{n+1}=\frac{11}{n+1}\)

\(\Rightarrow n+1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng

n + 11-111-11
n0-210-12
26 tháng 6 2020

d) Để D là số nguyên <=> \(\frac{3n+7}{2n+3}\)là số nguyên

<=> \(3n+7⋮2n+3\)

<=> 2(3n + 7) \(⋮\) 2n + 3

<=> 6n + 14 \(⋮\)2n + 3

<=> 3(2n + 3) + 5 \(⋮\)2n + 3

<=> 5 \(⋮\)2n + 3 (vì 3(2n + 3) \(⋮\)2n + 3)

<=> 2n + 3 \(\in\)Ư(5) = {1; -1; 5; -5}

Lập bảng:

2n + 3 1 -1 5 -5
  n -1 -2 1 -4

Vậy ....

6 tháng 11 2021

1. Ta có : 3n + 3 \(⋮n-1\Rightarrow3n-3+6⋮n-1\Rightarrow3\left(n-1\right)+6⋮n-1\)

Vì 3(n - 1) \(⋮\)n - 1

=> 6 \(⋮n-1\)

=> n - 1 \(\inƯ\left(6\right)=\left\{1;2;3;6;-1;-2;-3;-6\right\}\)

<=> \(n\in\left\{0;2;3;4;7\right\}\)

2) 2n + 6 \(⋮n+1\Rightarrow2\left(n+1\right)+4⋮n+1\)

Vì 2(n + 1) \(⋮\)n + 1

=> 4 \(⋮n+1\)

=> \(n+1\in\left\{1;2;4;-1;-2;-4\right\}\)

<=> n \(\in\left\{0;1;3\right\}\)

3. 10n + 20 \(⋮2n+1\Leftrightarrow5\left(2n+1\right)+15⋮2n+1\)

Vì 5(2n + 1) \(⋮\)2n + 1

<=> 15 \(⋮\)2n + 1

=> 2n + 1 \(Ư\left(15\right)=\left\{1;3;5;15-1;-3;-5;-15\right\}\)

<=> \(n\in\left\{0;1;2;7\right\}\)

TL

3n + 29 chia hết cho n + 3 <=> 20 chia hết chi n+3 <=> n+3 thuộc Ư(20)={1,2,4,5,10,20}

Với n + 3 = 1 => n không thuộc N (loại)

Với n + 3 = 2 => n không thuộc N (loại)

Với n + 3 = 4 => n = 1

Với n + 3 = 5 => n = 2

Với n+3 = 10 => n = 7

Với n + 3 = 20 => n = 17