\(6.14^2........54^7\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2021

\(1.\hept{\begin{cases}2-2\cos x\ge0\\\sqrt{2-2\cos x}-2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}\cos x\le1\left(đ\right)\\\cos x\ne-1\end{cases}}\Leftrightarrow x\ne\pi+k2\pi\left(k\in Z\right)\)

\(2.\hept{\begin{cases}\sin3x\ne0\\1+\sin3x\ge0\\1-\sqrt{1+\sin3x}\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x\ne k\pi\\\sin3x\ge-1\left(đ\right)\\\sin3x\ne0\end{cases}}\Leftrightarrow x\ne\frac{k\pi}{3}\left(k\in Z\right)\)

\(3.\hept{\begin{cases}\sin2x\ne0\\\sin x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ne k\pi\\x\ne k\pi\end{cases}}\Leftrightarrow x\ne\frac{k\pi}{2}\left(k\in Z\right)\)

20 tháng 8 2019

chịu thua

20 tháng 8 2019

giải ko ra hay sao ạ

18 tháng 7 2020

a) ĐK:  \(\cos x\ne0\)( vì tan x = sinx/cosx nên cos x khác 0)

<=> \(x\ne\frac{\pi}{2}+k\pi\); k thuộc Z

TXĐ: \(ℝ\backslash\left\{\frac{\pi}{2}+k\pi\right\}\); k thuộc Z

b) ĐK: \(1+\cos2x\ne0\Leftrightarrow\cos2x\ne-1\Leftrightarrow2x\ne\pi+k2\pi\Leftrightarrow x\ne\frac{\pi}{2}+k\pi\); k thuộc Z

=> TXĐ: \(ℝ\backslash\left\{\frac{\pi}{2}+k\pi\right\}\); k thuộc Z

c) ĐK: \(\hept{\begin{cases}\cot x-\sqrt{3}\ne0\\\sin x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\frac{\pi}{6}+k\pi\text{​​}\text{​​}\\x\ne l\pi\end{cases}}\); k,l thuộc Z

=>TXĐ: ....

d) ĐK: \(1-2\sin^2x\ne0\Leftrightarrow\cos2x\ne0\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

=> TXĐ:...

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

Lời giải:

Em không rõ ở phần tìm đạo hàm theo định nghĩa (lim) hay tìm đạo hàm dựa theo công thức

Thông thường lớp 11 thì thường áp dụng luôn công thức

Áp dụng công thức: \((u^{\alpha})'=\alpha.u'.u^{\alpha-1}\) thì:

\(y=(x+\sqrt{1+x^2})^{\frac{1}{2}}\)

\(\Rightarrow y'=\frac{1}{2}(x+\sqrt{x^2+1})'(x+\sqrt{x^2+1})^{\frac{1}{2}-1}\)

\(=\frac{(x+\sqrt{x^2+1})'}{2\sqrt{x+\sqrt{x^2+1}}}(*)\)

\((x+\sqrt{x^2+1})'=x'+(\sqrt{x^2+1})'=1+((x^2+1)^{\frac{1}{2}})'\)

\(=1+\frac{1}{2}(x^2+1)'(x^2+1)^{\frac{1}{2}-1}\)

\(=1+\frac{1}{2}.2x.\frac{1}{\sqrt{x^2+1}}=1+\frac{x}{\sqrt{x^2+1}}(**)\)

Từ \((*);(**)\Rightarrow y'=\frac{x+\sqrt{x^2+1}}{\sqrt{x^2+1}.2\sqrt{x+\sqrt{x^2+1}}}=\frac{1}{2}\sqrt{\frac{x+\sqrt{x^2+1}}{x^2+1}}\)

8 tháng 12 2018

ta có : \(y'=\left(\sqrt{x+\sqrt{1+x^2}}\right)'=\dfrac{1}{2\sqrt{x+\sqrt{1+x^2}}}\left(x+\sqrt{1+x^2}\right)'\)

\(=\dfrac{1}{2\sqrt{x+\sqrt{1+x^2}}}\left(1+\dfrac{1}{2\sqrt{1+x^2}}\left(1+x^2\right)'\right)\) \(=\dfrac{1}{2\sqrt{x+\sqrt{1+x^2}}}\left(1+\dfrac{2x}{2\sqrt{1+x^2}}\right)\) \(=\dfrac{1}{2\sqrt{x+\sqrt{1+x^2}}}\left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}}\right)=\dfrac{1}{2}\sqrt{\dfrac{x+\sqrt{1+x^2}}{1+x^2}}\)