![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)
\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)
\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)
\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)
\(\Leftrightarrow2\sqrt{x-8}+16=x\)
\(\Leftrightarrow x=24\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: Giả sử
\(8-\sqrt{2}>4+\sqrt{5}\)
\(\Leftrightarrow4>\sqrt{2}+\sqrt{5}\)
\(\Leftrightarrow16>7+2\sqrt{10}\)
\(\Leftrightarrow9>2\sqrt{10}\Leftrightarrow81>40\)(đúng)
Vậy \(8-\sqrt{2}>4+\sqrt{5}\)
Bài 3: Ta có
\(x^2+2015x-2014=2\sqrt{2017x-2016}\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\left(2017x-2016\right)-2\sqrt{2017x-2016}+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{2017x-2016}-1=0\end{cases}}\)
\(\Leftrightarrow x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(a.\)Ta có:
\(7>4\) nên \(\sqrt{7}>\sqrt{4}\)
\(\Rightarrow\) \(\sqrt{7}>2\) \(\left(1\right)\)
và \(5>4\) nên \(\sqrt{5}>\sqrt{4}\)
\(\Rightarrow\) \(\sqrt{5}>2\) \(\left(2\right)\)
Mặt khác, ta lại có: \(\sqrt{12}< \sqrt{16}=4\) \(\left(i\right)\)
Do đó, từ hai bđt \(\left(1\right)\) và \(\left(2\right)\) , kết hợp với chú ý \(\left(i\right)\) ta suy ra được:
\(\sqrt{7}+\sqrt{5}>\sqrt{12}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
n là số nguyên dương
Bình phương hai vế, ta được:
\(\left(\sqrt{n+2}-\sqrt{n+1}\right)^2=n+2+n+1-2\sqrt{\left(n+2\right)\left(n+1\right)}\) \(=2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}\)
\(\left(\sqrt{n+1}-\sqrt{n}\right)^2=n+1+n-2\sqrt{n\left(n+1\right)}\) \(=2n+1-2\sqrt{n\left(n+1\right)}\)
Ta có: \(\left(n+2\right)\left(n+1\right)>n\left(n+1\right)\Rightarrow2\sqrt{\left(n+2\right)\left(n+1\right)}>2\sqrt{n\left(n+1\right)}\)
Mà 2n + 3 > 2n + 1
\(\Rightarrow2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}>2n+1-2\sqrt{n\left(n+1\right)}\)
=> ( √n+2 - √n+1)^2 > ( √n-1 - √n)^2
=> √n+2 - √n+1 > √n-1 - √n
P/s: Em làm còn sai nhiều, mong mọi người góp ý, đừng chọn sai cho em. Em cảm ơn
![](https://rs.olm.vn/images/avt/0.png?1311)
Nhân cả 2 vế với \(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)\)ta được 25=5\(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)\)
<=> \(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)\)= 5 = \(\left(x-\sqrt{x^2+5}\right)\left(y-\sqrt{y^2+5}\right)\)
khai triển và rút gọn ta được \(x\sqrt{y^2+5}=-y\sqrt{x^2+5}\)
Nếu x=y=0 => M=0
xét x;y khác 0
\(\frac{\sqrt{x^2+5}}{\sqrt{y^2+5}}=\frac{-x}{y}\left(\frac{x}{y}< 0\right)\)<=>\(\frac{x^2+5}{y^2+5}=\frac{x^2}{y^2}=\frac{x^2+5-x^2}{y^2+5-y^2}=1=>\frac{x^2}{y^2}=1=>\frac{x}{y}=-1\left(\frac{x}{y}< 0\right).\)
hay x=-y => M= (-y)2017 +y2017 =0
vậy M=0
![](https://rs.olm.vn/images/avt/0.png?1311)
cả hai bài đều giải bằng cách bình phương cả hai vế rồi so sánh
So sánh từng vế:
\(\sqrt{15}+1=4,872983346\)
\(\sqrt{24}=4,898979486\)
Vậy: \(\sqrt{15}+1< \sqrt{24}\)
\(\sqrt{2002}+\sqrt{2004}=89,50977321\)
\(2\sqrt{2005}=89,5545271\)
Vậy \(\sqrt{2002}+\sqrt{2004}< 2\sqrt{2005}\)
P/s: Ko chắc
a) ta có 2=1+1=\(\sqrt{1}\)+1
Vì \(\sqrt{1}\)<\(\sqrt{2}\)nên \(\sqrt{1}\)+1 < \(\sqrt{2}\)+1
\(\Rightarrow\)2<\(\sqrt{2}\)+1
b) ta có: 12=\(\sqrt{25}\)+\(\sqrt{49}\)
\(\Rightarrow\)\(\hept{\begin{cases}\sqrt{24}< \sqrt{25}\\\sqrt{45}< \sqrt{49}\end{cases}}\Rightarrow\)\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}\)hay \(\sqrt{24}+\sqrt{45}\)<12