Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(\dfrac{9}{11}-0,81\right)^{2014}\)
\(=\left(\dfrac{9}{11}-\dfrac{81}{100}\right)^{2014}\)
\(=\left(\dfrac{900}{1100}-\dfrac{891}{1100}\right)^{2014}\)
\(=\left(\dfrac{9}{1100}\right)^{2014}\)
\(=\left(\dfrac{9}{11}.\dfrac{1}{100}\right)^{2014}\)
\(=\left(\dfrac{9}{11}\right)^{2014}.\dfrac{1}{10^{4028}}\)
\(=\left(\dfrac{9}{11}\right)^{2014}.N\)
Vì \(\left(\dfrac{9}{11}\right)^{2014}< 1\) nên M < N
a: =>4x-6-9=5-3x-3
=>4x-15=-3x+2
=>7x=17
hay x=17/7
b: \(\Leftrightarrow\dfrac{2}{3x}-\dfrac{1}{4}=\dfrac{4}{5}-\dfrac{7}{x}+2\)
=>2/3x+21/3x=4/5+2+1/4=61/20
=>23/3x=61/20
=>3x=23:61/20=460/61
hay x=460/183
a) \(\dfrac{-3}{5}.51\dfrac{11}{13}+\dfrac{3}{5}.21\dfrac{11}{13}\)
\(=\dfrac{-3}{5}.\left(51\dfrac{11}{13}-21\dfrac{11}{13}\right)\)
\(=\dfrac{-3}{5}.30\)
\(=-18.\)
b) \(\left|\dfrac{-3}{4}\right|.\left|-\dfrac{2}{3}\right|=\dfrac{3}{4}.\dfrac{2}{3}=\dfrac{1}{2}\).
c) \(\dfrac{-3}{5}+5\dfrac{1}{13}-\dfrac{2}{3}+1\dfrac{3}{5}-\dfrac{11}{33}\)
\(=\left(1\dfrac{3}{5}-\dfrac{3}{5}\right)+5\dfrac{1}{13}-\left(\dfrac{2}{3}+\dfrac{11}{33}\right)\)
\(=1+\dfrac{66}{13}-1\)
\(=\dfrac{66}{13}.\)
d) \(\dfrac{3}{4}.\sqrt{16}-10.\sqrt{0,81}\)
\(=\dfrac{3}{4}.4-10.\dfrac{9}{10}\)
\(=3.9\)
\(=27.\)
e) \(\left(\dfrac{3}{4}\right)^3:\left(\dfrac{-3}{8}\right)^3=\dfrac{3^3}{4^3}.\dfrac{\left(-8\right)^3}{3^3}=\left(\dfrac{-8}{4}\right)^3=\left(-2\right)^3=-8\)
f) \(\dfrac{6^4.15^3}{8.9^3.10^3}=\dfrac{2^4.3^4.3^3.5^3}{2^3.3^6.2^3.5^3}=\dfrac{2.3^7}{2^3.3^6}=\dfrac{3}{2^2}=\dfrac{3}{4}.\)
Ta có:\(\left(\frac{9}{11}-0,81\right)^{2005}\)=\(\left(\frac{9}{11}-\frac{81}{100}\right)^{2005}=\left(\frac{9}{1100}\right)^{2005}< \left(\frac{10}{1100}\right)^{2005}=\left(\frac{1}{110}\right)^{2005}\)
Mà \(\left(\frac{1}{110}\right)^{2005}< \left(\frac{1}{100}\right)^{2005}=\left[\left(\frac{1}{10}\right)^2\right]^{2005}=\left(\frac{1}{10}\right)^{4010}=\frac{1}{10^{4010}}\)
Vậy \(\left(\frac{9}{11}-0,81\right)^{2005}< \frac{1}{10^{4010}}\)
a,\(\left(-1,25\right).14,7.\left(-8\right)\)
\(=\left[\left(-1,25\right).\left(-8\right)\right].14,7\)
\(=10.14,7=147\)
b, \(\dfrac{3}{4}-1\dfrac{1}{6}\)
\(=\dfrac{3}{4}-\dfrac{7}{6}\)
\(=\dfrac{9-14}{12}=\dfrac{-5}{12}\)
câu c: Mình không biết bạn có gõ sai không, bạn coi đề lại xem.
d, \(\left|\dfrac{-3}{4}\right|.\left|-\dfrac{2}{3}\right|\)
\(=\dfrac{3}{4}.\dfrac{2}{3}=\dfrac{1.1}{2.1}=\dfrac{1}{2}\)
e, ?
a, Ta có :
\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)...........\left(\dfrac{1}{10}-1\right)\)
\(=\left(\dfrac{1}{2}-\dfrac{2}{2}\right)\left(\dfrac{1}{3}-\dfrac{3}{3}\right).........\left(\dfrac{1}{10}-\dfrac{10}{10}\right)\)
\(=\dfrac{-1}{2}.\dfrac{-2}{3}...............\dfrac{-9}{10}\)
\(=\dfrac{-1.\left(-2\right)............\left(-9\right)}{2.3........9.10}\)
\(=\dfrac{-1}{10}< \dfrac{-1}{9}\)
\(\Leftrightarrow A< \dfrac{-1}{9}\)
b, \(B=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)..........\left(\dfrac{1}{100}-1\right)\)
\(=\left(\dfrac{1}{4}-\dfrac{4}{4}\right)\left(\dfrac{1}{9}-\dfrac{9}{9}\right).........\left(\dfrac{1}{100}-\dfrac{100}{100}\right)\)
\(=\dfrac{-3}{4}.\dfrac{-8}{9}..............\dfrac{-99}{100}\)
\(=\dfrac{1.\left(-3\right).2\left(-4\right)............9\left(-11\right)}{2^2.3^2.......10^2}\)
\(=\dfrac{1.2.3........9}{2.3.......10}.\dfrac{\left(-3\right)\left(-4\right)....\left(-11\right)}{2.3...10}\)
\(=\dfrac{1}{10}.\dfrac{-11}{1}\)
\(=\dfrac{-11}{10}>\dfrac{-11}{21}\)
\(\Leftrightarrow B>\dfrac{-11}{21}\)
Ta có:
\(M=\left(\dfrac{9}{11}-0,81\right)^{2014}\)
\(=\left(\dfrac{9}{1100}\right)^{2014}\)
\(=\left(\dfrac{9}{11}.\dfrac{1}{100}\right)^{2014}\)
\(=\dfrac{9^{2014}}{11^{2014}}.\dfrac{1}{100^{2.2014}}\)
\(=\dfrac{9^{2014}}{11^{2014}}.\dfrac{1}{10^{2048}}\)
Vì: \(\dfrac{1}{10^{2048}}=\dfrac{1}{10^{2048}}\)
Nên: \(\dfrac{9^{2014}}{11^{2014}}.\dfrac{1}{10^{2048}}>\dfrac{1}{10^{2048}}\)
Hay: M>N
Vậy M>N
\(\dfrac{9}{11}-0,81=\dfrac{9}{11}-\dfrac{81}{100}=\dfrac{81}{99}-\dfrac{81}{100}< \dfrac{81+1}{99+1}-\dfrac{81}{100}\)
\(=\dfrac{82}{100}-\dfrac{81}{100}=\dfrac{1}{100}\)
\(\Rightarrow\left(\dfrac{9}{11}-0,81\right)^{2014}< \left(\dfrac{1}{100}\right)^{2014}=\dfrac{1}{10^{4028}}\)
\(M< N\)
Vậy \(M< N\)