Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt mẫu số của $B$ là $M$.
Từ \(2018x^3=2019y^3=2020z^3\)
\(\Rightarrow \sqrt[3]{2018}x=\sqrt[3]{2019}y=\sqrt[3]{2020}z=\frac{\sqrt[3]{2018}}{\frac{1}{x}}=\frac{\sqrt[3]{2019}}{\frac{1}{y}}=\frac{\sqrt[3]{2020}}{\frac{1}{z}}=\frac{\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020}}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\)
\(=\frac{\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020}}{8}=\frac{M}{8}\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{M}{8\sqrt[3]{2018}}\\ y=\frac{M}{8\sqrt[3]{2019}}\\ z=\frac{M}{8\sqrt[3]{2020}}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2018x^2=\frac{\sqrt[3]{2018}M^2}{64}\\ 2019y^2=\frac{\sqrt[3]{2019}M^2}{64}\\ 2020z^2=\frac{\sqrt[3]{2020}M^2}{64}\end{matrix}\right.\)
\(\Rightarrow 2018x^2+2019y^2+2020z^2=\frac{M^2(\sqrt[3]{2018}+\sqrt[3]{2019}+\sqrt[3]{2020})}{64}=\frac{M^3}{64}\)
\(\Rightarrow B=\frac{\sqrt[3]{\frac{M^3}{64}}}{M}=\frac{M}{4M}=\frac{1}{4}\)
a ) thay \(x=\sqrt{3}-2\) vào hàm số ,
ta được : \(y=\left(\sqrt{3}-2\right).\left(\sqrt{3}-2\right)+1\)
\(y=3-2\sqrt{3}-2\sqrt{3}+4+1\)
\(y=8-4\sqrt{3}\)
b ) Để đường thẳng y = 2x - 1 cắt đường thẳng y = 3x + m thì :
\(\hept{\begin{cases}a\ne a'\\b=b'\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\ne3\\-1=m\end{cases}}\)
Vậy khi m = -1 thì hai đường thẳng trên cắt nhau tại một điểm trên trục tung
a) \(\sqrt{2004}-\sqrt{2003}=\frac{1}{\sqrt{2004}+\sqrt{2003}}>\frac{1}{\sqrt{2006}+\sqrt{2005}}=\sqrt{2006}-\sqrt{2005}\)
b) Tương tự.
\(f\left(\sqrt{3}+\sqrt{2}\right)=\dfrac{2\sqrt{3}+2\sqrt{2}+3}{\sqrt{3}+\sqrt{2}-2}\)
\(=\dfrac{\left(2\sqrt{3}+2\sqrt{2}+3\right)\left(\sqrt{3}+\sqrt{2}+2\right)}{2\sqrt{6}+1}\)
\(=\dfrac{\left(6+2\sqrt{6}+4\sqrt{3}+2\sqrt{6}+4+4\sqrt{2}+3\sqrt{3}+3\sqrt{2}+6\right)}{2\sqrt{6}+1}\)
\(=\dfrac{\left(16+4\sqrt{6}+7\sqrt{3}+7\sqrt{2}\right)\left(2\sqrt{6}-1\right)}{23}\)
\(\sqrt{2}\)+3=3+\(\sqrt{2}\)
\(\sqrt{3}\)+2=2+\(\sqrt{3}\)
\(\Rightarrow\)\(\sqrt{2}\)+3>\(\sqrt{3}\)+2
\(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{9.2}=\sqrt{18}\)
do đó \(2\sqrt{3}< 3\sqrt{2}\)
bạn hỏi chán thế bài này dễ mà hay bạn hỏi hộ người khác à