Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1000^9=999.1000^8+1000^8.\)
mà 999.10008 > 999.9998 = 9999 ; 10008 > 9998
\(\Rightarrow B>A\)
1 - \(\frac{999}{556}\) = \(\frac{-443}{556}\)
1 - \(\frac{1000}{557}\) = \(\frac{-443}{557}\)
Vì \(\frac{-443}{556}\) < \(\frac{-443}{557}\) nên \(\frac{999}{556}\) > \(\frac{1000}{557}\)
First we have :
\(\frac{999}{556}=\frac{999\cdot557}{556\cdot557}\)
Then : \(999\cdot557=999\cdot556+999\)
Next we have : \(1000\cdot556=999\cdot556+556\)
As you see : \(999\cdot556+556< 999\cdot556+999\)
So :\(\frac{999}{556}< \frac{1000}{557}\)
C= (1 - \(\frac{1}{2^2}\))+(1 - \(\frac{1}{3^2}\) )+(1 - \(\frac{1}{4^2}\))+.......+(1 - \(\frac{1}{100^2}\))
=98 - (\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+........+\(\frac{1}{100^2}\))
=> C< 98 bn xem lai nha hinh nhu de sai phai cong den \(\frac{9999}{10000}\)
Lời giải:
\(M=999^9+999^8=999^8.999+999^8=999^8(999+1)\)
\(=1000.999^8< 1000.1000^8\)
Hay \(M< 1000^9\Rightarrow M< N\)