Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
a,-3/5.2/7+-3/7.3/5+-3/7
=-3/7.2/5+(-3/7).3/5+(-3/7)
=-3/7(2/5+3/5+1)
=-3/7.2
=-6/7
a) \(22\frac{1}{2}\cdot\frac{7}{9}+50\%-1,25\)
\(=\frac{45}{2}\cdot\frac{7}{9}+\frac{50}{100}-\frac{125}{100}\)
\(=\frac{5}{2}\cdot\frac{7}{1}+\frac{1}{2}-\frac{5}{4}\)
\(=\frac{35}{2}+\frac{1}{2}-\frac{5}{4}=18-\frac{5}{4}=\frac{67}{4}\)
b) \(1,4\cdot\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)
\(=\frac{7}{5}\cdot\frac{15}{49}-\frac{22}{15}:\frac{11}{15}\)
\(=\frac{1}{1}\cdot\frac{3}{7}-\frac{22}{15}\cdot\frac{15}{11}\)
\(=\frac{3}{7}-2=\frac{3-14}{7}=\frac{-11}{7}\)
c) \(\left(-\frac{1}{2}\right)^2-\frac{7}{16}:\frac{7}{4}+75\%\)
\(=\frac{1}{4}-\frac{7}{16}\cdot\frac{4}{7}+\frac{75}{100}\)
\(=\frac{1}{4}-\frac{1}{4}+\frac{3}{4}=\frac{3}{4}\)
Bài 2 Bạn tự làm nhé
1.a,\(22\frac{1}{2}.\frac{7}{9}+50\%-1,25\)
\(=\frac{45}{2}.\frac{7}{9}+\frac{1}{2}-\frac{5}{4}\)
\(=\frac{35}{2}+\frac{1}{2}-\frac{5}{4}\)
\(=\frac{67}{4}\)
b,Các phép tính khác làm tương tự
Đổi các số ra hết thành phân số,có ngoặc thì lm ngoặc trc,Xoq đến nhân chia trước dồi mới cộng trừ
c,tương tự
2.
a,\(1\frac{3}{5}+\frac{7}{12}\div x=\frac{-9}{4}\)
\(\frac{8}{5}+\frac{7}{12}\div x=\frac{-9}{4}\)
\(\frac{7}{12}\div x=\frac{-77}{20}\)
Đến đây dễ bạn tự làm
b,\(\left(2\frac{4}{5}.x+50\right)\div\frac{2}{3}=-51\)
\(\left(\frac{14}{5}x+50\right)\div\frac{2}{3}=-51\)
\(\frac{14}{5}x+50=-34\)
\(\frac{14}{5}x=-84\)
Tự làm tiếp
c,\(\left|\frac{3}{4}.x-\frac{1}{2}\right|=\frac{1}{4}\)\(\Rightarrow\left|\frac{3}{4}x-\frac{1}{2}\right|=\varnothing\)
XD: best tiếng anh chuyển sang toán ak!?
\(B1:\)
\(M=\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)...\left(1+\frac{7}{10800}\right)\)
\(=\frac{16}{9}\cdot\frac{27}{20}\cdot\frac{40}{33}\cdot\cdot\cdot\frac{10807}{10800}\)
\(=\frac{8.2}{9.1}\cdot\frac{9.3}{10.2}\cdot\frac{10.4}{11.3}\cdot\cdot\cdot\frac{57.51}{58.50}\)
\(=\frac{\left(8.9.10...57\right)\left(2.3.4...51\right)}{\left(9.10.11...58\right).\left(1.2.3...50\right)}\)
\(=\frac{8.51}{58.1}=\frac{204}{29}\)
Vậy.....
\(M=\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)...\left(1+\frac{7}{10800}\right)\)
\(M=\frac{16}{9}.\frac{27}{20}.\frac{40}{33}...\frac{10807}{10800}\)
\(M=\frac{8.2}{9.1}.\frac{9.3}{10.2}.\frac{10.4}{11.3}...\frac{107.101}{108.100}\)
\(M=\frac{\left(2.3.4...101\right)\left(8.9.10...107\right)}{\left(1.2.3...100\right)\left(9.10.11...108\right)}\)
\(M=\frac{101.8}{108}\)
\(M=\frac{202}{27}\)
k mình nha . câu 2 tí nữa mình gửi
Ta có :
\(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
\(=\frac{12}{4.16}+\frac{20}{16.36}+...+\frac{388}{9216.9604}+\frac{396}{9604.10000}\)
\(=\frac{1}{4}-\frac{1}{16}+\frac{1}{16}-\frac{1}{36}+...+\frac{1}{9604}-\frac{1}{10000}\)
\(=\frac{1}{4}-\frac{1}{10000}< \frac{1}{4}\)
\(\Leftrightarrow B< \frac{1}{4}\)
B=\(\frac{12}{4.16}\)+\(\frac{20}{16.36}\)+...+\(\frac{396}{9604.10000}\)
Ta có:\(\frac{12}{4.16}\)=\(\frac{1}{4}\)-\(\frac{1}{16}\)
\(\frac{20}{16.36}\)=\(\frac{1}{16}\)-\(\frac{1}{36}\)
...
Khi đó:B=\(\frac{1}{4}\)-\(\frac{1}{16}\)+\(\frac{1}{16}\)-\(\frac{1}{36}\)+...+\(\frac{1}{9604}\)-\(\frac{1}{10000}\)=\(\frac{1}{4}\)-\(\frac{1}{10000}\)<\(\frac{1}{4}\)
Vậy: B<\(\frac{1}{4}\)
a) A = \(\frac{101}{19}.\) \(\frac{61}{218}-\frac{101}{218}.\frac{42}{19}+\frac{117}{218}\)
= \(\frac{101}{218}.\frac{61}{19}-\frac{101}{218}.\frac{42}{19}+\frac{117}{218}\)
=\(\frac{101}{218}.\left(\frac{61}{19}-\frac{42}{19}\right)+\frac{117}{218}\)
=\(\frac{101}{218}.\frac{19}{19}+\frac{117}{218}\)
=\(\frac{101}{218}.1+\frac{117}{218}\)
=\(\frac{101}{218}+\frac{117}{218}\)
=\(\frac{218}{218}\)\(=1\)
b) B = \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right).\left(\frac{4}{5}-\frac{3}{4}-\frac{1}{20}\right)\)
= \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right)\)\(.\left(\frac{1}{20}-\frac{1}{20}\right)\)
= \(\left(\frac{5}{2011^2}+\frac{7}{2012^2}-\frac{9}{2013^2}\right).0\)
= \(0\)
Ta có \(\left(-\frac{1}{25}\right)5=\left(-\frac{1}{5}\right)^{2.5}=\left(-\frac{1}{5}\right)^{10}>\left(-\frac{1}{5}\right)^9\)