Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\\\end{cases}\varphi\Delta\xi\subseteq\sinh\tanh_{ }_{ }\overline{ }^{ }\orbr{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\frac{ }{ }\sqrt[]{}\sqrt[]{}\sqrt[]{}\sqrt{ }}\)
\(\left[18\frac{1}{6}-\left(0,06:7\frac{1}{2}+3\frac{2}{5}\cdot0,38\right)\right]:\left(19-2\frac{2}{3}\cdot4\frac{3}{4}\right)\)
\(< =>\left[\frac{109}{6}-\left(\frac{3}{50}:\frac{15}{2}+\frac{17}{5}\cdot\frac{19}{50}\right)\right]:\left(19-\frac{8}{3}\cdot\frac{19}{4}\right)\)
\(< =>\left[\frac{109}{6}-\left(\frac{1}{125}+\frac{323}{250}\right)\right]:\left(19-\frac{38}{3}\right)\)
\(< =>\left[\frac{109}{6}-\frac{13}{10}\right]:\frac{19}{3}\)
\(< =>\frac{253}{15}:\frac{19}{3}\)
\(< =>\frac{253}{95}\)
\(\text{a, }2^{30}=8^{10}\)
\(\text{ }3^{20}=\left(3^2\right)^{10}=9^{10}\)
\(\text{Vậy }2^{30}< 3^{20}\)
\(\text{b, }5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(\text{Vậy }5^{300}< 243^{100}\)
Ta có :
\(A=\left(-\frac{2}{5}x^2y\right)\left(\frac{15}{8}xy^2\right)\left(-x^3y^2\right)\)
\(\Rightarrow A=\left(-\frac{2}{5}.\frac{15}{8}\right)\left(x^2.x.-x^3\right)\left(y.y^2.y^2\right)\)
\(\Rightarrow A=-\frac{3}{4}.-x^6.y^5\)
\(\Rightarrow A=-\frac{3}{4}.\left(-1\right)x^6y^5\)
\(\Rightarrow A=\frac{3}{4}x^6y^5\)
Lại có :
\(\frac{x}{3}=\frac{y}{2}\)và \(x+3y=3\)
ADTCDTSBN , ta có :
\(\frac{x}{3}=\frac{y}{2}=\frac{3y}{6}=\frac{x+3y}{3+6}=\frac{3}{9}=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{1}{3}\\\frac{y}{2}=\frac{1}{3}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.3=1\\y=\frac{1}{3}.2=\frac{2}{3}\end{cases}}}\)
Thay \(x=1;y=\frac{2}{3}\)vào A ta được :
\(A=\frac{3}{4}.1^6.\left(\frac{2}{3}\right)^5\)
\(\Rightarrow A=\frac{3}{4}.\frac{32}{243}\)
\(\Rightarrow A=\frac{8}{81}\)
Vậy ...
ta có hai cách giải
cách 1:
gọi x/3=y/2=k
=> x=3k và y=2k
vì x+3y=3 => 3k+6k=3
=> 9k=3 => k=1/3
suy ra x=1 và y= 2/3
* Thay vào x;y vào phép tính trên rồi tự tính nhé
nếu k cho mik mik sẽ gợi ý cách còn lại
THANKS
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
b. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Theo t/c dảy tỉ số = nhau:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> \(\frac{x^2}{4}=\frac{1}{4}\Rightarrow x^2=\frac{1}{4}.4=1=1^2=\left(-1\right)^2\Rightarrow x=\)+1
=> \(\frac{y^2}{16}=\frac{1}{4}\Rightarrow y^2=\frac{1}{4}.16=4=2^2=\left(-2\right)^2\Rightarrow y=\)+2
=> \(\frac{z^2}{36}=\frac{1}{4}\Rightarrow z^2=\frac{1}{4}.36=9=3^2=\left(-3\right)^2\Rightarrow z=\)+3
Vậy có 2 cặp (x;y;z) là: (1;2;3) và (-1;-2;-3).
a. Áp dụng t/c tỉ số = nhau làm tương tự.