Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 1:12+1:22+1:32+...+1:992+1:1002=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)(1)
mà \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)<1 (2)
từ (1) và (2) => 1:12+1:22+1:32+...+1:992+1:1002<1
đề này cứ thế nào ấy, ít nhất thì bạn phải cho tụi mình biết thêm 1 vế nữa chứ!
2x2=4
3x1=3
vậy 4 > 3
= 22 > 31
tích mình đi , anh em xung phong
\(5S=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2015}{5^{2014}}\Rightarrow4S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}-\frac{2015}{5^{2015}}\)
Đặt B = \(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2014}}\)
=> 5B = \(5+1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}\)
=> 4B = \(5-\frac{1}{5^{2014}}<5\)
=> B < \(\frac{5}{4}\)=> 4S < 5/4 => S < 5/16< 1/3
=> S < 1/3
đúng nhé
\(\Rightarrow\)2K=\(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{19}}\)\(\Rightarrow2K-k=k=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}-k\)
\(\Rightarrow k=1-\frac{1}{2^{20}}< 1\)
\(\Rightarrow k< H\)
Vậy......