Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 216 và B=(2+1)(22+1)(24+1)(28+1)
Xet B=(2+1)(22+1)(24+1)(28+1)
=(2-1)(2+1)(22+1)(24+1)(28+1)
=(22-1)(22+1)(24+1)(28+1)
=(24-1)(24+1)(28+1)
=(28-1)(28+1)
=216-1
So sanh A=216 va B=216-1 ta co A>B
Ta có : \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1=A-1\)
Vậy B < A
a)72 -272 =(7-27)(7+27)
=-20.34
=-680
b)372 -132=(37-13)(37+13)=24.50
=1200
c)20022-22=(2002-2)(2002+2)
=2000.2004
=4008000
\(A=-x^2+6x-15\)
\(A=-x^2+2.3x-9-6\)
\(\Rightarrow-A=x^2-2.3x+9+6\)
\(-A=\left(x^2-2.3.x+3^2\right)+6\)
\(-A=\left(x-3\right)^2+6\)
\(\Rightarrow A=-\left(x-3\right)^2-6\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2-6\le-6\forall x\)
\(A=-6\Leftrightarrow-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amax =-6\(\Leftrightarrow\)x=3
\(B=-2x^2+8x-15\)
\(-2B=4x^2-16x+30\)
\(-2B=\left[\left(2x\right)^2-2.2x.4+4^2\right]+14\)
\(-2B=\left(2x-4\right)^2+14\)
\(\Rightarrow B=-\frac{\left(2x-4\right)^2}{2}-7\)
Ta có: \(-\frac{\left(2x-4\right)^2}{2}\le0\forall x\)
Đến đây b làm tương tự như trên nhé.
Chúc b học tốt
a) \(A=-x^2+6x-15\)
\(-A=x^2-6x+15\)
\(-A=\left(x^2-6x+9\right)+6\)
\(-A=\left(x-3\right)^2+6\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge6\)
\(\Leftrightarrow A\le-6\)
Dấu "=" xảy ra khi :
\(x-3=0\Leftrightarrow x=3\)
Vậy \(A_{Max}=-6\Leftrightarrow x=3\)
a) \(x^2+6xy+9x^2=\left(x+3x\right)^2\)
b) \(\left(a-2b^2\right)^2=a^2-4ab^2+4b^4\)
c) \(\left(m+1\right)^2=m^2+2m+1\)
d) \(m^2-4n^4=\left(m+2n^2\right)\left(m-2n^2\right)\)
\(\left(x+y\right)^2+\left(x-y\right)^2=\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)=2\left(x^2+y^2\right)\)
(x+y)2+(x-y)2 = ( x2 +2xy+y2 ) + (x2 -2xy+y2 ) =\(2\left(x+y\right)^2\)
Bình và Minh đều viết đúng. Và Sơn rút ra hằng đẳng thức: A2-2AB+B2=(A-B)2=(B-A)2
Ta có 1999*2001 = (2000-1)*(2000+1)
= 2000^2 - 1^2
Biết 2000^2 = 2000^2
=> 2000^2 - 1^2 < 2000^2
<=> 1999*2001 < 2000^2