Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x-y}{x+y}=\frac{x^2-y^2}{\left(x+y\right)^2}\) Dễ thấy \(\frac{x^2-y^2}{\left(x+y\right)^2}< \frac{x^2-y^2}{x^2+y^2}\)
vì \(\left(x+y\right)^2>x^2+y^2\) (với x > 0, y > 0)
Nên \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
b) \(\frac{\left(a+b\right)^2}{a^2-b^2}=\frac{a+b}{a-b}=\frac{a^2-b^2}{\left(a-b\right)^2}< \frac{a^2+b^2}{\left(a-b\right)^2}\) (với a > 0, b > 0)
Vậy \(\frac{\left(a+b\right)^2}{a^2-b^2}< \frac{a^2+b^2}{\left(a-b\right)^2}\)
Ta có A = 2018.2020 + 2019.2021
= (2020 - 2).2020 + 2019.(2019 + 2)
= 20202 - 2.2020 + 20192 + 2.2019
= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B
=> A = B
b) Ta có B = 964 - 1= (932)2 - 12
= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1)
(932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80
mà A = (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10
=> A < B
c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)
=> A < B
d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)
=> A < B
Ta có : \(\frac{x+y}{x-y}=\frac{\left(x+y\right)\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{x^2+2xy+y^2}{x^2-y^2}>\frac{x^2+y^2}{x^2-y^2}\)
Nên \(\frac{x+y}{x-y}>\frac{x^2+y^2}{x^2-y^2}\) Hay \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\) (\(\frac{a}{b}>\frac{c}{d}\) thì \(\frac{b}{a}< \frac{d}{c}\) )
Vậy \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
\(Ta\)\(có\)\(:\)\(\frac{x+y}{x-y}=\frac{\left(x+y\right)}{\left(x-y\right)}\frac{\left(x+y\right)}{\left(x+y\right)}=\frac{x^2+2xy+y2}{x^2-y^2}\)\(>\frac{x^2+y^2}{x^2-y^2}\)
\(Nên\)\(:\)\(\frac{x+y}{x-y}>\frac{x^2+y^2}{x^2-y^2}hay\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)\(\left(\frac{a}{b}>\frac{c}{d}thì\frac{b}{a}< \frac{d}{c}\right)\)
\(Vậy\)\(:\)\(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
Cho y > x > 0 và \(\frac{x^2+y^2}{xy}\) = \(\frac{10}{3}\) TÍnh gt biểu thức M = \(\frac{x-y}{x+y}\)
Ta có : \(M=\frac{x-y}{x+y}\)
=> \(M^2=\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{x^2+y^2-2xy}{x^2+y^2+2xy}\)
Lại có : \(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow x^2+y^2=\frac{10}{3}xy\)
Do đo : \(M^2=\frac{\frac{10}{3}xy-2xy}{\frac{10}{3}xy+2xy}=\frac{\frac{4}{3}xy}{\frac{16}{3}xy}=\frac{1}{4}\)
\(\Rightarrow M=-\frac{1}{2};\frac{1}{2}\)
\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow3x^2+3y^2-10xy=0\)
\(\Rightarrow\left(3x^2-9xy\right)-\left(xy-3y^2\right)=0\Rightarrow3x\left(x-3y\right)-y\left(x-3y\right)=0\)
\(\Rightarrow\left(x-3y\right)\left(3x-y\right)=0\Rightarrow3x-y=0\left(y>x>0\Rightarrow x-3y< 0\right)\Rightarrow3x=y\)
\(M=\frac{x-y}{x+y}=\frac{x-3x}{x+3x}=\frac{-2x}{4x}=-\frac{1}{2}\)
Có thể thế vào: x=2;y=1.Ta có:
\(\frac{x-y}{x+y}=\frac{2-1}{2+1}=\frac{1}{3}\) và \(\frac{x^2-y^2}{x^2+y^2}=\frac{2^2-1^2}{2^2+1^2}=\frac{3}{5}\)
\(\Rightarrow\frac{1}{3}< \frac{3}{5}\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
cái này mik giải để giúp mọi người nếu bạn cho rằng sai thì giải thử xem.