Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\frac{19^{20}+5}{19^{20}-8}=\frac{19^{20}-8+13}{19^{20}-8}=1+\frac{13}{19^{20}-8}\)
\(B=\frac{19^{21}+6}{19^{21}-7}=\frac{19^{21}-7+13}{19^{21}-7}=1+\frac{13}{19^{21}-7}\)
Vì \(19^{20}-8< 19^{21}-7\Rightarrow\frac{13}{19^{20}-8}>\frac{13}{19^{21}-7}\)
\(\Rightarrow A>B\)
thông điệp nhỏ:
hay khi ko muốn tích
ai tích mình tích lại nha nha
Ta có: \(A=\frac {19^{20}+5}{19^{20}-8}=\frac {19^{20}-8+13}{19^{20}-8}=1+\frac {13}{19^{20}-8}\)
\(B=\frac {19^{20}+6}{19^{20}-7}=\frac {19^{20}-7+13}{19^{20}-7}=1+\frac {13}{19^{20}-7}\)
Vì \(19^{20}-8<19^{20}-7\) nên \(\frac {13}{19^{20}-8}>\frac {13}{19^{20}-7}\)
\(\Rightarrow\)\(1+\frac{13}{19^{20}-8}>1+\frac{13}{19^{20}-7}\) Hay \(A>B\)
Vậy A>B
ta có A = \(\frac{19^{20}+5}{19^{20}-8}=\frac{19^{20}-8+13}{19^{20}-8}=1+\frac{13}{19^{20}-8}\)
và B = \(\frac{19^{20}+6}{19^{20}-7}=\frac{19^{20}-7+13}{19^{20}-7}=1+\frac{13}{19^{20}-7}\)
vì \(\frac{13}{19^{20}-8}>\frac{13}{19^{20}-7}\)\(\Rightarrow1+\frac{13}{19^{20}-8}>1+\frac{13}{19^{20}-7}\)\(\Rightarrow A>B\)
Do \(B=\frac{10^{20}+1}{10^{21}+1}\)<1
\(\Rightarrow B=\frac{10^{20}+1}{10^{21}+1}\)<\(\frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
\(\Rightarrow\)B<A hay A<B
a) Giải
So sánh từng số hạng của A với B, ta thấy:
\(\dfrac{19}{41}< \dfrac{21}{41};\dfrac{23}{53}< \dfrac{23}{49}\) và \(\dfrac{29}{61}< \dfrac{33}{65}\) (vì 29.65 < 33.61)
\(\Rightarrow\dfrac{19}{41}+\dfrac{23}{53}+\dfrac{29}{61}< \dfrac{21}{41}+\dfrac{23}{49}+\dfrac{33}{65}\)
\(\Rightarrow A< B\)
Vậy A < B
b) Giải
Ta có: \(C=\dfrac{19^{20}+5}{19^{20}-8}=\dfrac{19^{20}-8+13}{19^{20}-8}=1+\dfrac{13}{19^{20}-8}\)
\(D=\dfrac{19^{21}+6}{19^{21}-7}=\dfrac{19^{21}-7+13}{19^{21}-7}=1+\dfrac{13}{19^{21}-7}\)
Vì \(19^{20}-8< 19^{21}-7\) và \(13>0\)
\(\Rightarrow\dfrac{13}{19^{20}-8}< \dfrac{13}{19^{21}-7}\)
\(\Rightarrow1+\dfrac{13}{19^{20}-8}< 1+\dfrac{13}{19^{21}-7}\)
\(\Rightarrow\) \(C< D\)
Vậy C < D.
\(A=\frac{19^{30}+5}{19^{31}+5}=>19A=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\left(1\right)\)
\(B=\frac{19^{31}+5}{19^{32}+5}=>19B=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\left(2\right)\)
từ (1) and (2)
=>19A>19B
=>A>B
Ta có:
19A=19^31+95/19^31+5
19A= (19^31+5)+90/19^31+5
19A=1+90/19^31+5
19B=19^32+95/19^32+5
19B=(19^32+5)+90/19^32+5
19B=1+90/19^32+5
Vì: 90/19^31+5>90/19^31+5 nên 19A>19B hay A>B
A= \(\frac{19^{20}+5}{19^{20}-8}=\frac{19^{20}-8+13}{19^{20}-8}=1+\frac{13}{19^{20}-8}\)
B= \(\frac{19^{21}+6}{19^{21}-7}=\frac{19^{21}-7+13}{19^{21}-7}=1+\frac{13}{19^{21}-7}\)
Mà \(\frac{13}{19^{20}-8}>\frac{13}{19^{21}-7}\) nên A > B
k nha
A=19^20+5/19^20-8 >1
=> 19^20+5/19^20-8> 19^20+5+1+19/19^20-8+1+19 B=19^20+5+1+19/19^20-8+1+19 =19^21+6/19^21-7
=> A>B