\(\dfrac{2017^{2016-1}}{2017^{2017-1}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2017

Giải:

Có:

\(A=\dfrac{2017^{2016-1}}{2017^{2017-1}}\)\(B=\dfrac{2017^{2015+1}}{2017^{2016+1}}\)

\(\Rightarrow A=\dfrac{2017^{2016-1}}{2017^{2017-1}}=\dfrac{2017^{2015}}{2017^{2016}}=\dfrac{1}{2017}\)

\(\Rightarrow B=\dfrac{2017^{2015+1}}{2017^{2016+1}}=\dfrac{2017^{2016}}{2017^{2017}}=\dfrac{1}{2017}\)

Vậy \(A=B\)

Chúc bạn học tốt!ok

19 tháng 6 2017

Ta có:

\(A=\dfrac{2017^{2016-1}}{2017^{2017-1}}=\dfrac{2017^{2015}}{2017^{2016}}=\dfrac{1}{2017}\)(1)

\(B=\dfrac{2017^{2015+1}}{2017^{2016+1}}=\dfrac{2017^{2016}}{2017^{2017}}=\dfrac{1}{2017}\)(2)

Từ (1) và (2) suy ra:

\(A=B\)

Chúc bạn học tốt!!!

P/s: Xem lại đề xem là +1 vs -1 ở dưới hay bên trên số mũ nha!!

19 tháng 6 2017

\(A=\frac{2017^{2016-1}}{2017^{2017-1}}=\frac{2017^{2015}}{2017^{2016}}=\frac{2017^{2015}}{2017^{2015}.2017}=\frac{1}{2017}\)(1)

\(B=\frac{2017^{2015+1}}{2017^{2016+1}}=\frac{2017^{2016}}{2017^{2017}}=\frac{2017^{2016}}{2017^{2016}.2017}=\frac{1}{2017}\)(2)

Từ (1) và (2)\(\Rightarrow\)A = B

\(\dfrac{2017}{1}+\dfrac{2016}{2}+...+\dfrac{2}{2016}+\dfrac{1}{2017}\)

\(=\left(\dfrac{2016}{2}+1\right)+\left(\dfrac{2015}{3}+1\right)+...+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{1}{2017}+1\right)+1\)

\(=\dfrac{2018}{2}+\dfrac{2018}{3}+...+\dfrac{2018}{2017}+\dfrac{2018}{2018}\)

\(=2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)\)

Theo đề, ta có: \(x=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2018}}=2018\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2019

Lời giải:

Ta có \(\frac{2016c-2017b}{2015}=\frac{2017a-2015c}{2016}=\frac{2015b-2016a}{2017}\)

\(\Rightarrow \frac{2015.2016c-2015.2017b}{2015^2}=\frac{2016.2017a-2016.2015c}{2016^2}=\frac{2017.2015b-2017.2016a}{2017^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\( \frac{2015.2016c-2015.2017b}{2015^2}=\frac{2016.2017a-2016.2015c}{2016^2}=\frac{2017.2015b-2017.2016a}{2017^2}\)

\(=\frac{2015.2016c-2015.2017b+2016.2017a-2016.2015c+2017.2015b-2017.2016a}{2015^2+2016^2+2017^2}=0\)

\(\Rightarrow \left\{\begin{matrix} 2015.2016c-2015.2017b=0\\ 2016.2017a-2016.2015c=0\\ 2017.2015b-2016.2016a=0\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} 2016c=2017b\\ 2017a=2015c\\ 2015b=2016a\end{matrix}\right.\Rightarrow \frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\)

Ta có đpcm.

14 tháng 4 2017

10a=10^2017+10/10^2017+1
10b=10^2018+10/10^2018+1

cậu tự so sánh nhé vậy là dễ rồi


14 tháng 4 2017

Ta có: \(A=\dfrac{10^{2016}+1}{10^{2017}+1}\Rightarrow10A=\dfrac{10\left(10^{2016}+1\right)}{10^{2017}+1}=\dfrac{10^{2017}+10}{10^{2017}+1}\)

\(=\dfrac{10^{2017}+1+9}{10^{2017}+1}=\dfrac{10^{2017}+1}{10^{2017}+1}+\dfrac{9}{10^{2017}+1}=1+\dfrac{9}{10^{2017}+1}\)

Tương tự ta cũng có: \(10B=1+\dfrac{9}{10^{2018}+1}\)

Lại có: \(10^{2017}< 10^{2018}\Rightarrow10^{2017}+1< 10^{2018}+1\)

\(\Rightarrow\dfrac{1}{10^{2017}+1}>\dfrac{1}{10^{2018}+1}\Rightarrow\dfrac{9}{10^{2017}+1}>\dfrac{9}{10^{2018}+1}\)

\(\Rightarrow1+\dfrac{9}{10^{2017}+1}>1+\dfrac{9}{10^{2018}+1}\Rightarrow10A>10B\Rightarrow A>B\)

20 tháng 6 2018

a) ta có: \(1-\frac{2016}{2017}=\frac{1}{2017}\)

\(1-\frac{2017}{2018}=\frac{1}{2018}\)

\(\Rightarrow\frac{1}{2017}>\frac{1}{2018}\Rightarrow1-\frac{2016}{2017}>1-\frac{2017}{2018}\Rightarrow\frac{2016}{2017}< \frac{2017}{2018}\)

b) ta có: \(\frac{2017}{2016}-1=\frac{1}{2016};\frac{2018}{2017}-1=\frac{1}{2017}\)

\(\Rightarrow\frac{1}{2016}>\frac{1}{2017}\Rightarrow\frac{2017}{2016}-1>\frac{2018}{2017}-1\Rightarrow\frac{2017}{2016}>\frac{2018}{2017}\)

20 tháng 6 2018

Tru 1 moi phan so roi so sanh nha 'O_O"

3 tháng 11 2017

Vì /2x+1/ ≥ 0

=> /2x+1/ + 2017 ≥ 2017

=> 2016/ /2x+1/ +2017 ≤ 2016/2017

Vậy Bmax = 2016/2017 khi /2x+1/ = 0 => 2x+1 =0 => 2x=-1

=> x = -1/2

16 tháng 7 2017

help mekhocroi

16 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

Ta có:

\(x=\dfrac{2016^{2017}+1}{2016^{2016}+1}< 1\)

\(\Rightarrow x< \dfrac{2016^{2017}+1+2015}{2016^{2016}+1+2015}\Rightarrow x< \dfrac{2016^{2017}+2016}{2016^{2016}+2016}\Rightarrow x< \dfrac{2016\left(2016^{2016}+1\right)}{2016\left(2016^{2015}+1\right)}\Rightarrow x< \dfrac{2016^{2016}+1}{2016^{2015}+1}=y\)

\(\Rightarrow x< y\)

26 tháng 8 2017

Áp dung công thức \(a>b\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\)

\(B=\frac{10^{2017}+1}{10^{2016}+1}>\frac{10^{2017}+1+9}{10^{2016}+1+9}=\frac{10^{2017}+10}{10^{2016}+10}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2015}+1\right)}=\frac{10^{2016}+1}{10^{2015}+1}=A\)

\(\Leftrightarrow B>A\)