Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A>B\),có lẽ là bởi vì \(A\)có mũ 2010 ;còn \(B\)thì lại có mũ 2009.
Ta có: \(P\left(x\right)+Q\left(x\right)=2\left(1+x^2+x^4+...+x^{2010}\right)\)
\(\Rightarrow P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)
Đặt \(K=\left(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{2010}}\right)\)
\(\Rightarrow\frac{1}{2^2}K=\left(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{2012}}\right)\)
\(\Rightarrow K-\frac{1}{2^2}K=1-\frac{1}{2^{2012}}\)
\(\Rightarrow\frac{3}{4}K=1-\frac{1}{2^{2012}}\)
\(\Rightarrow K=\frac{4}{3}-\frac{1}{3.2^{2010}}\)
Lúc đó \(P\left(\frac{1}{2}\right)+Q\left(\frac{1}{2}\right)=2\left(\frac{4}{3}-\frac{1}{3.2^{2010}}\right)=\frac{8}{3}-\frac{1}{3.2^{2009}}\)
\(=\frac{2^{2012}-1}{3.2^{2009}}\)
Ta thấy \(2^{2012}-1=2^{4.503}-1=\overline{...6}-1=\overline{...5}⋮5\)
Mà 3 . 22009 không chia hết cho 5 nên khi ta rút gọn \(\frac{2^{2012}-1}{3.2^{2009}}\)đến dạng tối giản thì a vẫn chia hết cho 5.
Vậy \(a⋮5\left(đpcm\right)\)
a) \(\left(a-2009\right)^2+\left(b+2010\right)^2=0\)
vì \(\left(a-2009\right)^2\ge0\) \(\left(b+2010\right)^2\ge0\)
suy ra \(a-2009=0\Rightarrow a=2009\)
\(b+2010=0\Rightarrow b=-2010\)
b) \(\left|a-2010\right|=2009\)
* Nếu \(a-2010\ge0\Rightarrow a>2010\)
\(a-2010=2009\)
\(a=4019\)(TMĐK)
* Nếu \(a-2010< 0\Rightarrow a< 2010\)
\(-\left(a-2010\right)=2009\)
\(a=1\)(TMĐK)
Vậy \(a=4019\) hoặc \(a=1\)
Ta có: /x-2009/2009\(\ge\)0; (y-2010)2010=[(y-2010)1005]2 \(\ge\)0 và 2011/z-2011/\(\ge\)0
Tổng 3 số dương 0 khi và chỉ khi 3 số đó đều=0, khi đó dấu bằng xảy ra.
=> \(\hept{\begin{cases}Ix-2009I^{2009}=0\\\left(y-2010\right)^{2010}=0\\2011Iz-2011I=0\end{cases}}\)
=> x=2009; y=2010; z=2011
bạn vào link dưới đây nhé
https://olm.vn/hoi-dap/question/826167.html
nhớ tick cho mk nhé!!! :))