\(\frac{2^{2015}+1}{2^{2012}+1}=\frac{2^{2017}+1}{2^{2014}+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\frac{2^{2015}+1}{2^{2012}+1}\)\(B=\frac{2^{2017}+1}{2^{2014}+1}\)

Ta có: \(\frac{1}{8A}=2^{2015}+\frac{1}{2^{2015}}+8=2^{2015}+8-\frac{7}{2^{2015}}+8=1-\frac{7}{2^{2015}}+8\)

\(\frac{1}{8B}=2^{2017}+\frac{1}{2^{2017}}+8=2^{2017}+8-\frac{7}{2^{2017}}+8=1-\frac{7}{2^{2017}}+8\)

Ta có: \(7^{2015}< 7^{2017}\)

\(\Rightarrow\frac{7}{2^{2015}}>\frac{7}{2^{2017}}\)

\(\Rightarrow1-\frac{7}{2^{2015}}+8< 1-\frac{7}{2^{2017}}+8\)

hay A<B

hay \(\frac{2^{2015}+1}{2^{2012}+1}\)<\(\frac{2^{2017}+1}{2^{2014}+1}\)

Giả sử A=\(\frac{2^{2015}+1}{2^{2012}+1}\)

-->\(\frac{1}{2^3}A=\frac{2^{2015}+1}{2^{2015}+8}\)

\(\frac{1}{8}A=\frac{2^{2015}+1}{2^{2015}+1}+\frac{2^{2015}+1}{7}\)

\(\frac{1}{8}A=1+\frac{2^{2015}+1}{7}\)

B=\(\frac{2^{2017}+1}{2^{2014}+1}\)

\(\frac{1}{2^3}B=\frac{2^{2017}+1}{2^{2017}+8}\)

\(\frac{1}{8}B=\frac{2^{2017}+1}{2^{2017}+1}+\frac{2^{2017}+1}{7}\)

\(\frac{1}{8}B=1+\frac{2^{2017}+1}{7}\)

     Vì \(1+\frac{2^{2015}+1}{7}< 1+\frac{2^{2017}+1}{7}\)

nên \(\frac{1}{8}A< \frac{1}{8}B\)

-->A<B

-->\(\frac{2^{2015}+1}{2^{2012+1}}< \frac{2^{2017+1}}{2^{2014}+1}\)

10 tháng 12 2017

đặt \(A=\frac{2^{2015}+1}{2^{2012}+1}\)\(B=\frac{2^{2017}+1}{2^{2014}+1}\)

ta có :\(A=\frac{2^{2015}+1}{2^{2012}+1}\)

\(\frac{1}{2^3}A=\frac{2^{2015}+1}{2^{2015}+8}=\frac{2^{2015}+8-7}{2^{2015}+8}=1-\frac{7}{2^{2015}+8}\)

\(B=\frac{2^{2017}+1}{2^{2014}+1}\)

\(\frac{1}{2^3}B=\frac{2^{2017}+1}{2^{2017}+8}=\frac{2^{2017}+8-7}{2^{2017}+8}=1-\frac{7}{2^{2017}+8}\)

vì 22015 + 8 < 22017 + 8 nên \(\frac{7}{2^{2015}+8}>\frac{7}{2^{2015}+8}\)

\(\Rightarrow1-\frac{7}{2^{2015}+8}< 1-\frac{7}{2^{2017}+8}\)

hay \(\frac{1}{2^3}A< \frac{1}{2^3}B\)

\(\Rightarrow A< B\)

9 tháng 12 2016

Đặt: (2^2015)+1/(2^2012)+1 là A và (2^2017)+1/(2^2014)+1 là B

1/8A=(2^2015)+1/(2^2015)+8=(2^2015)+8-7/(2^2015)+8=1-7/(2^2015)+8

1/8B=(2^2017)+1/(2^2017)+8=(2^2017)+8-7/(2^2017)+8=1-7/(2^2017)+8

Vì 2^2015+8<2^2017+8 nên 7/(2^2015+8)>7/(2^2017)+8 nên 1-7/(2^2015)+8<1-7/(2^2017)+8 từ đó suy ra B>A hay 2^2017+1/(2^2014)+1>(2^2015)+1/(2^2012)+1

9 tháng 12 2016

mik nghĩ đề bị nhầm ở p/s 1

22 tháng 1 2020

\(\frac{2^{2017}+1}{2^{2014}+1}>1\\ \Rightarrow\frac{2^{2017}+1}{2^{2014}+1}>\frac{2^{2017}+\left(1+3\right)}{2^{2014}+\left(1+3\right)}\\ \Rightarrow\frac{2^{2017}+1}{2^{2014}+1}>\frac{2^{2017}+4}{2^{2014}+4}\\ \Rightarrow\frac{2^{2017}+1}{2^{2014}+1}>\frac{4\left(2^{2015}+1\right)}{4\left(2^{2012}+1\right)}\\ \Rightarrow\frac{2^{2017}+1}{2^{2014}+1}>\frac{2^{2015}+1}{2^{2012}+1}\)

22 tháng 1 2020

Cảm ơn ạ ^^

14 tháng 8 2017

a, \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\left(\frac{2011}{1}+1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2012\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}=\frac{1}{2012}\)

b, \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+1}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{\frac{2017}{1}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}=\frac{1}{2017}\)

13 tháng 3 2019

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)

\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)

\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)

13 tháng 3 2019

3/\(7a+b=0\Rightarrow b=-7a\)

\(f\left(x\right)=ax^2-7ax+c\).Ta có: \(f\left(10\right)=100a-70a+c=30a+c\)

\(f\left(-3\right)=30a+c\).Nhân theo vế ta có đpcm:

\(f\left(10\right).f\left(-3\right)=\left(30a+c\right)^2\ge0\) (đúng)

25 tháng 9 2016

thêm số hạng 1 vào bên phải nha

27 tháng 1 2020

Xét \( A = 1 + \dfrac{{2014}}{2} + \dfrac{{2015}}{3} + ... + \dfrac{{4023}}{{2011}} + \dfrac{{4024}}{{2012}}\\ \)

\(\Rightarrow A - 2012 = \left( {\dfrac{{2014}}{2} - 1} \right) + \left( {\dfrac{{2015}}{3} - 1} \right) + ... + \left( {\dfrac{{4024}}{{2012}} - 1} \right)\\ \Rightarrow A - 2012 = \dfrac{{2012}}{2} + \dfrac{{2012}}{3} + ... + \dfrac{{2012}}{{2012}}\\ \Rightarrow A - 2012 = 2012\left( {\dfrac{1}{2} + \dfrac{1}{3} + ... + \dfrac{1}{{2012}}} \right)\\ \Rightarrow A = 2012\left( {1 + \dfrac{1}{2} + ... + \dfrac{1}{{2012}}} \right)\\ \Rightarrow \left( {1 + \dfrac{1}{2} + \dfrac{1}{3} + ... + \dfrac{1}{{2012}}} \right)503x = 2012\left( {1 + ... + \dfrac{1}{{2012}}} \right)\\ \Rightarrow x = \dfrac{{2012}}{{503}} = 4 \)