Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(< \frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\)
\(< \frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(< \frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)
\(< \frac{1}{2^2.3.5^2.7}\)
\(A=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(A< \frac{1}{100\cdot101}+\frac{1}{101\cdot102}+\frac{1}{102\cdot103}+\frac{1}{103\cdot104}+\frac{1}{104\cdot105}\)
\(=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(=\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}=\frac{1}{2^2\cdot3\cdot5^2\cdot7}=B\)
Vậy \(A< B\)
\(B=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}<\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{103.104}\)
Tính VP ra là được
B = \(\frac{1}{2^2.3-5^2.7}\)= \(\frac{-1}{163}\)
Đặt A = \(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{105^2}\)
Vì A > 0 (các số hạng của A đều > 0)
Mà B < 0
=> A > B
-Ta có:A= 1/101^2+1/102^2+1/103^2+1/104^2+1/105^2
A>1/(100x101)+1/(101x102)+1/(102x103)+...
-Vì cùng tử mẫu nhỏ hơn thì lớn hơn
A>1/100-1/101+1/101-1/102+1/102-1/103+...
A>1/100-1/105=1/2100=1/(2^2.3.5^2.7)=B
=>Vậy A>B
2/
a) Ta có x : 2 = y : 5
=> \(\frac{x}{2}=\frac{y}{5}\) và \(x+y=21\).
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=3=>x=3.2=6\\\frac{y}{5}=3=>y=3.5=15\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;15\right)\).
Chúc bạn học tốt!
an vo cai nay la vo tra loi
http://360game.vn/landing-360game/dck/webgame-tien-hiep-moi-nhat-2017-sound?utm_content=M05_DCK-m05_FC-3&utm_medium=LifeMedia&utm_source=SSP&utm_campaign=210917_CB&utm_term=DCK&from3rd=LifeMedia&sid=none&err=1