Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vd 3:
a) 9/10 > 5/42 b) -4/27 < 10/-73
Vd 4:
5/-6: -7/12; 5/8; 3/4
Vd 5:
x<y
Vd 6:
-16/27= -16/27> -16/29
So sánh:
\(P=\frac{4}{7}+5+\frac{3}{7^2}+\frac{5}{7^3}+\frac{6}{7^4}\)
\(Q=\frac{5}{7^4}+5+\frac{6}{7^2}+\frac{4}{7}+\frac{5}{7^3}\)
Ta có : \(P=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{3}{7^2}+\frac{6}{7^4}\right\}\)
\(Q=\left\{\frac{4}{7}+5+\frac{5}{7^3}\right\}+\left\{\frac{5}{7^4}+\frac{6}{7^2}\right\}\)
So sánh : \(\frac{3}{7^2}+\frac{6}{7^4}\)và \(\frac{5}{7^4}+\frac{6}{7^2}\)
Ta có : \(\frac{3}{7^2}+\frac{6}{7^4}=\frac{49.3}{7^4}+\frac{6}{7^4}\)
\(\frac{5}{7^4}+\frac{6}{7^2}=\frac{5}{7^4}+\frac{49.6}{7^4}\)
Vì 49.3 + 6 < 49.6 + 5 nên Q > P.
nhờ 2 câu nha
tim x
(x2+1)2+3x (x2+1)2+2x2=0
x3+6x+12x +8x3 -21=0
\(1.\) sai đề rồi nha. dề đúng phải là \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
đặt \(\left(x^2+1\right)=k\) \(\Rightarrow\)biểu thức trên có dạng là \(k^2+3xk+2x^2=0\)
\(\Leftrightarrow\) \(\left(k+x\right)\left(k+2x\right)=0\)
suy ra \(k+x=0\) hoặc \(k+2x=0\)
\(x^2+1+x=0\) \(x^2+1+2x=0\)
bấm máy tình không ra \(\left(x+1\right)^2=0\)
nên ko có giá trị của x \(x+1=0\)
\(x=-1\)
Vậy \(x=-1\)
Ta có :
\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)
\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)
\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\)
\(\Rightarrow\)\(S>10\)
Vậy \(S>10\)
Chúc bạn học tốt ~
\(\text{A = }\frac{\text{-1}}{\text{2011}}-\frac{\text{3}}{\text{11}^2}-\frac{\text{5}}{\text{11}^2.\text{11}}-\frac{\text{7}}{\text{11}^2.\text{11}^2}=\text{ }\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)\)
\(\text{B = }\frac{\text{-1}}{\text{2011}}-\frac{7}{\text{11}^2}-\frac{5}{\text{11}^2.\text{11}}-\frac{3}{\text{11}^2.\text{11}^2}=\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
\(\text{Vì }3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}< 7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\)
\(\Rightarrow\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(3-\frac{\text{5}}{\text{11}}-\frac{\text{7}}{\text{11}^2}\right)>\frac{\text{-1}}{\text{2011}}-\frac{\text{1}}{\text{11}^2}.\left(7-\frac{5}{\text{11}}-\frac{3}{\text{11}^2}\right)\)
=> A > B
Vậy A > B
(2x-5)-(\(\frac{3}{2}\) . 6x + \(\frac{3}{2}\))=4
2x -5 - 9x -\(\frac{3}{2}\) =4
2x - 9x = 4+ 5+ \(\frac{3}{2}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)